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Introduction Perceptron Logistic Regression Naive Bayes Multi-class strategies More methods Evaluation

When/why do we do classification

• Is a given email spam or not?
• What is the gender of the author of a document?
• Is a product review positive or negative?
• Who is the author of a document?
• What is the subject of an article?
• …

As opposed to regression, the outcome is a ‘category’.
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The task

• Given a set of training data
with (categorical) labels

• Train a model to predict
future data points from the
same distribution
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Outline

• Perceptron
• Logistic regression
• Naive Bayes
• Multi-class strategies for binary classifiers
• Evaluation metrics for classification
• Brief notes on what we skipped
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The perceptron
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−1 otherwise

Similar to the intercept in linear models, an additional input x0 which is always set
to one is often used (called bias in ANN literature)
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The perceptron: in plain words
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w
0 • Sum all input xi weighted with

corresponding weight wi

• Classify the input using a threshold
function

positive the sum is larger than 0
negative otherwise
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Learning with perceptron

• We do not update the parameters if classification is correct
• For misclassified examples, we try to minimize

E(w) = −
∑
i

wxiyi

where i ranges over all misclassified examples
• Perceptron algorithm updates the weights such that

w← w− η∇E(w)

w← w+ ηxiyi

for misclassified examples. η is the learning rate
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The perceptron algorithm

• The perceptron algorithm can be
online update weights for a single misclassified example
batch updates weights for all misclassified examples at once
• The perceptron algorithm converges to the global minimum if the classes are
linearly separable

• If the classes are not linearly separable, the perceptron algorithm will not stop
• We do not know whether the classes are linearly separable or not before the

algorithm converges
• In practice, one can set a stopping condition, such as

– Maximum number iterations/updates
– Number of misclassified examples
– Number of iterations without improvement
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1. Randomly initialize w (the decision
boundary is orthogonal to w)

2. Pick a misclassified example xi add
yixi to w

3. Set w← w+ yixi, go to step 2 until
convergence
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Perceptron: a bit of history

• The perceptron was developed in late 1950’s and early 1960’s (Rosenblatt,
1958)

• It caused excitement in many fields including computer science, artificial
intelligence, cognitive science

• The excitement (and funding) died away in early 1970’s (after the criticism by
Minsky and Papert, 1969)

• The main issue was the fact that the perceptron algorithm cannot handle
problems that are not linearly separable
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Logistic regression

• Logistic regression is a classification method
• In logistic regression, we fit a model that predicts P(y | x)

• Logistic regression is an extension of linear regression
– it is a member of the family of models called generalized linear models

• Typically formulated for binary classification, but it has a natural extension to
multiple classes

• The multi-class logistic regression is often called maximum-entropy model (or
max-ent) in the NLP literature
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Data for logistic regression
an example with a single predictor

−2 −1 0 1 2

0

0.5

1

x

y

• Why not just use linear regression?
• What is P(y | x = 2)?
• Is RMS error appropriate?
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Fixing the outcome: transforming the output variable
• The prediction we are interested in is ŷ = P(y = 1|x)

• We transform it with logit function:

logit(ŷ) = log ŷ

1− ŷ
= w0 +w1x

• ŷ
1−ŷ

(odds) is bounded between 0 and∞
• log ŷ

1−ŷ
(log odds) is bounded between −∞ and∞

• we can estimate logit(ŷ) with regression, transform with the inverse of logit()

ŷ =
ew0+w1x

1+ ew0+w1x
=

1

1+ e−w0−w1x

which is called logistic (sigmoid) function
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Logistic function
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How to fit a logistic regression model
with maximum-likelihood estimation

P(y = 1 | x) = p =
1

1+ e−wx
P(y = 0 | x) = 1− p =

e−wx

1+ e−wx

The likelihood of the training set is,

L(w) =
∏
i

pyi(1− p)1−yi

In practice, we maximize log likelihood, or minimize ‘− log likelihood’:

− logL(w) = −
∑
i

yi log p+ (1− yi) log(1− p)
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How to fit a logistic regression model (2)

• Bad news: there is no analytic solution
• Good news: the (negative) log likelihood is a convex function
• We can use iterative methods such as gradient descent to find parameters that

maximize the (log) likelihood
• Using gradient descent, we repeat

w← w− η∇E(w)

until convergence, η is the learning rate
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Example logistic-regression
back to the example with a single predictor
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Another example
two predictors
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Multi-class logistic regression

• Generalizing logistic regression to more than two classes is straightforward
• We estimate,

P(Ck | x) =
ewkx∑
j e

wjx

where Ck is the kth class, j iterates over all classes.
• The function is called the softmax function, used frequently in neural network

models as well
• This model is also known as log-linear model, maximum entropy model, or
Boltzmann machine
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Naive Bayes classifier

• Naive Bayes classifier is a well-known simple classifier
• It was found to be effective on a number tasks, primarily in document
classification

• Popularized by practical spam detection applications
• Naive part comes from a strong independence assumption
• Bayes part comes from the use of Bayes’ formula for inverting conditional

probabilities

• However, learning is (typically) ‘not really’ Bayesian
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Naive Bayes: estimation

• Given a set of features x, we want to know the class y of the object we want to
classify

• At prediction time we pick the class, ŷ

ŷ = arg max
y

P(y | x)

• Instead of directly estimating the conditional probability, we invert it using
the Bayes’ formula

ŷ = arg max
y

P(x | y)P(y)

P(x)
= arg max

y
P(x | y)P(y)

• Now the task becomes estimating P(x | y) and P(y)
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Naive Bayes: estimation (cont.)

• Class distribution, P(y), is estimated using the MLE on the training set
• With many features, x = (x1, x2, . . . xn), P(x | y) is difficult to estimate
• Naive Bayes estimator makes a conditional independence assumption: given

the class, we assume that the features are independent of each other

P(x | y) = P(x1, x2, . . . xn | y) =

n∏
i=1

P(xi | y)
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Naive Bayes: estimation (cont.)

• The probability distributions P(xi | y) and P(y) are typically estimated using
MLE (count and divide)

• A smoothing technique may be used for unknown features (e.g., words)
• Note that P(xi | y) can be

binomial e.g, whether a word occurs in the document or not
categorical e.g, estimated using relative frequency of words
continuous the data is distributed according to a known distribution
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Naive Bayes
a simple example: spam detection

Training data:
features present label
good book NS
now book free S
medication lose weight S
technology advanced book NS
now advanced technology S

• A test instance: {book, technology}
• Another one: {good, medication}

P(S) = 3/5, P(NS) = 2/5

w P(w | S) P(w |NS)

medication 1/3 0
free 1/3 0
technology 1/3 1/2
advanced 1/3 1/2
book 1/3 2/2
now 2/3 0
lose 1/3 0
weight 1/3 0
good 0 1/2
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Classifying classification methods
another short digression

• Some classification algorithms are non-probabilistic, discriminative: they
return a label for a given input. Examples: perceptron, SVMs, decision trees

• Some classification algorithms are discriminative, probabilistic: they estimate
the conditional probability distribution p(c | x) directly. Examples: logistic
regression, (most) neural networks

• Some classification algorithms are generative: they estimate the joint
distribution p(c, x). Examples: naive Bayes, Hidden Markov Models, (some)
neural models
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More than two classes

• Some algorithms can naturally be extended to handle multiple class labels
• Any binary classifier can be turned into a k-way classifier by
OvR one-vs-rest or one-vs-all

• train k classifiers: each learns to discriminate one of the classes from the others
• at prediction time the classifier with the highest confidence wins
• needs a confidence score from the base classifiers

OvO one-vs-one
• train k(k−1)

2
classifiers: each learns to discriminate a pair of classes

• decision is made by (weighted) majority vote
• works without need for confidence scores, but needs more classifiers
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One vs. Rest

x1

x2

+

+

+

+

−

−

−

×
×

×

× • For 3 classes, we fit 3 classifiers
separating one class from the rest

• Some regions of the feature space
will be ambiguous

• We can assign labels based on
probability or weight value, if
classifier returns one

• One-vs.-one and majority voting is
another option
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More classification methods …

• Classification is a well-studied topic in ML, with a large range of applications
• There are many different approaches
• In most cases you can ‘plug’ a classification algorithm instead of another,

treating classifiers as ‘black boxes’
• You should, however, understand the methods you use: you may not be able

to use them properly if you do not understand them
• One-slide introduction to some of the methods we did not cover starts on the

next slide
• We will return to some specialized methods later in this course
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Maximum-margin methods (e.g., SVMs)

−

−

−

+

+

+

+

• In perceptron, we stopped whenever we
found a linear discriminator

• Maximum-margin classifiers seek a
discriminator that maximizes the margin

• SVMs have other interesting properties,
and they have been one of the best
‘out-of-the-box’ classifiers for many
problems
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A quick survey of some solutions
Decision trees
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• Note that the decision boundary is
non-linear
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A quick survey of some solutions
Instance/memory based methods
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−

−

−
?

• No training: just memorize the instances
• During test time, decide based on the k

nearest neighbors
• Like decision trees, kNN is non-linear
• It can also be used for regression
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A quick survey of some solutions
Artificial neural networks
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Measuring success in classification
Accuracy

• In classification, we do not care (much) about the average of the error function
• We are interested in how many of our predictions are correct
• Accuracy measures this directly

accuracy =
number of correct predictions
total number of predictions
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Accuracy may go wrong

• Think about a ‘dummy’ search engine that always returns an empty
document set (no results found)

• If we have
– 1 000 000 documents
– 1000 relevant documents (related to the terms in the query)

the accuracy is:

999 000

1 000 000
= 99.9%

• In general, if our class distribution is skewed, or imbalanced, accuracy will be a
bad indicator of success
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Measuring success in classification
Precision, recall, F-score

precision =
TP

TP + FP

recall = TP

TP + FN

F1-score =
2× precision× recall
precision+ recall

predicted
positive negative

pos. TP FN

neg. FP TNtr
ue

va
lu

e
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Example: back to the ‘dummy’ search engine
• For a query

– 1 000 000 documents
– 1000 relevant documents

accuracy =
999 000

1 000 000
= 99.9%

precision =
0

0
= 0% (undefined, common convention)

recall = 0

1 000 000
= 0%

Precision and recall are asymmetric,
the choice of the ‘positive’ class is important.
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Classifier evaluation: another example
Consider the following two classifiers:

predicted
positive negative

pos. 7 3
neg. 9 1

predicted
positive negative

1 9
3 7tr

ue
va

lu
e

Accuracy both 8/20 = 0.4

Precision 7/16 = 0.44 and 1/4 = 0.25

Recall 7/10 = 0.7 and 1/10 = 0.1

F-score 0.54 and 0.14
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Multi-class evaluation
• For multi-class problems, it is common to report average

precision/recall/f-score
• For C classes, averaging can be done two ways:

precisionM =

∑C
i

TPi

TPi+FPi

C
recallM =

∑C
i

TPi

TPi+FNi

C

precisionµ =

∑C
i TPi∑C

i TPi + FPi
recallµ =

∑C
i TPi∑C

i TPi + FNi

(M = macro, µ = micro)
• The averaging can also be useful for binary classification, if there is no natural

positive class
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Confusion matrix

• A confusion matrix is often useful for multi-class classification tasks

predicted
negative neutral positive

negative 10 2 0

neutral 3 12 7

positive 4 8 7tr
ue

va
lu

e

• Are the classes balanced?
• What is the accuracy?
• What is per-class, and averaged precision/recall?
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Precision–recall trade-off

• Increasing precision (e.g., by
changing a hyperparameter) results
in decreasing recall

• Precision–recall graphs are useful
for picking the correct models

• Area under the curve (AUC) is
another indication of success of a
classifier 0 0.5 1

0

0.5

1

recall

pr
ec

isi
on
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Performance metrics a summary

• Accuracy does not reflect the classifier performance when class distribution is
skewed

• Precision and recall are binary and asymmetric
• For multi-class problems, calculating accuracy is straightforward, but others

measures need averaging
• These are just the most common measures, there are more
• You should understand what these metrics measure, and use/report the

metric that is useful for the purpose
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Summary

• We discussed three basic classification techniques: perceptron, logistic
regression, naive Bayes

• We left out many others: SVMs, decision trees, …
• We also did not discuss a few other interesting cases, including multi-label

classification
• Reading suggestion: James et al. (2023, ch.4), Jurafsky and Martin (2009,

ch.4&5, draft 3rd edition)
Next

• Unsupervised learning: clustering
• Reading suggestion: James et al. (2023, section 12.4)
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