Unsupervised learning

Clustering
Statistcal Natural Language Processing 1 + In unsupervised learning, we do not have labels in our training data
+ Our aimis to find useful patterns/structure in the data
an Galtekin ~ for exploratory study of the data
e ~ foraugmenting / complementing supervised methods
Universty ofTabingn « Close relationships with ‘data mining’, ‘data science / analytics, knowledge
wery’
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+ Evaluation i difficult: no ‘true’ labels values

Today’s lecture (and later) Clustering: why do we do it?

« Today: clustering, finding related groups of instances
~ kemeans « The aimis to find groups of instances /items that are similar to each other
- hierarchical lustering + Applcations nclude
~ evaluation - Clust nguages, dialects for determining ther relations

« Later: clustering, finding related groups of instances e Gae Ty o o g ey A
- = Clustering words for e, better parsing

~ Dimensionality reducton: ind an accurate/useful lower dimensional  Clustering documents, €, news ntotoples
representation of the data -
- Unsupervised learning in ANNs (RBMs, autoencoders)

Clustering in two dimensional space Similarity and distance

* The notin o disance (simiriy) i imporiant i clusteing. A disance
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+ Unlike classification, we do not have
Iabels
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« We wantto find ‘natural’ groups in
the data

« Intuitively,similar or closer data

How to do clustering
Most clustering algorithms try to minimize the scatter
s equivalent to maximizing the scatter betyveen clusters.
x

Distance measures in Euclidean space

+ Fuclidean distance:
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+ Manhattan distance:

i1 each cluster. Which
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s clustering: visualization

K-means algorithm

Kemeans is a popular method for clustering
1. Randomly choose centroids, m1, .., m, representing K clusters
2. Repeat until convergence
~ Assign each data point o the custer of the nearest centroid
- Re-caleulate the centroid locations based on the assigaments
Effectively, we are finding a local minimun of the sum of squared Euclidean
distance within each cluster

« The data

+ Set cluster centroids randomly

« Assign data points to the closest
centroid

+ Recalculate the centroids
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K-means clustering: visualization K-means clustering: visualization

« Thedata

« Set cluster centroids randomly

» Assigndata poiis o th dosest
centrol

+ Recalculate the centroids

- Thedata

+ Set cluster centroids randomly

« Assign data points to the closest
centroi

+ Recalculate the centroids




K-means clustering: visualization

« Thedata

« Set cluster centroids randomly
« Assign data points to the closest

+ Recalculate the centroids

Kemeans clustering; visualization

« Thedata
« Setcluster centroids randomly
+ Assign data poins o the closest
centroid

+ Recalculate the centroids

« Thedata

« Set cluster centroids randomly
+ Assign data points to the closest
centroid

+ Recalculate the centroids

Kemeans clustering; visualization

« The data

+ Setcluster centroids randomly

« Assign data points to the closest
centroid

+ Recalculate the centroids

« Thedata

« Set cluster centroids randomly
+ Assign data points to the closest

« Recalculate the centroids

K-means clustering: visualization

« The data

+ Set luster centroids randomly

« Assign data points to the closest
centroid

+ Recalculate the centroids

K-means: some issues

 Kemeans requires the data to be in an Euclidean space
« Kemeans is sensitive to outliers
« The results are sensitive to initialization

- Tnerearesome smarer ways o et it ponis
tiple mmnhnhmu and pick the best
(it Jowest i group s

« It warks well with approximately. zqnal—slu round-shaped clusters

+ We need to specify number of clusters in advance

How many clusters?

« The number of clusters is defined for some problems, ¢, classifying news.
into a fixed set of

« For others, there is no clear way to select the best number of clusters.

« The error tier) decreases with of
clusters, using a test set or cross validation is not useful either

+ A common approach is clustering for multiple K values, and picking where

there is an ‘elbow in the graph of the error function

How many clusters
Jow)
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K-medoids

+ Kmedoids algorithm is an alternation of K-means

« Instead of calculating centroids, we try to find most typical data point
(medoids) at each iteration

does not need

. vectors tobeinan
Euclidean space

« Itis less sensitive to outliers
« Itis computationally more expensive than K-means

Hierarchical clustering

« Instead of a fla division ta clusters as in K-means, hierarchical clustering.

builds a hierarchy based on similarity of the data points

re two main ‘modes of operation':
Bottom-up o agglomeratioe clustering

« tarts with inlividual data points,

= merges theclusters unti al dta 1 n  single chuster
Top-down or e custetng

aresingle datapoints

Hierarchical clustering

« The resultis a binary tree called dendrogram

+ Dendrograms are easy to interpret (especially if data is hierarchical)

« The algorithm does not commit to the number of clusters K from the start, the
dendrogram can be ‘cut’ at any height for determining the clusters




Agglomerative clustering

1. Compute the similarity/distance
matrix
2. Assign each data point to its own
cluster
3. Repeat until no clusters left to merge
~ Pick two clusters that are most
similar to each ather 1 4 4 4 4

= Merge them into a single cluster

Agglomerative clustering demonstration

&

How to calculate between cluster distances

Complete maximal inter-cluster distance
Single minimal inter-cluster distance
Average mean inter-cluster distance
Centroid distance between the
centroids

24

How to calculate between cluster distances

e

Complete maximal inter-cluster distance
Single minimal inter-cluster distance
Average mean inter-cluster distance
Centroid distance between the
centroids.

How to calculate between cluster distances

i
Complete maximal inter-cluser distance
Single minimal nter-clusterdisance P4

/

Centroid distance between the
centroids

How to calculate between cluster distances.

¢4

Note: we only need distances,(feature) vectors are not necessary

Complete maximal inter-cluster distance
Single minimal inter-cluster distance
Average mean inter-cluster distance
Centroid distance between the
centroids.

Clustering evaluation

Evaluating clustering results is often non-trivial
. is based a metric that aims “good cl
e.g, Dunn index, gap satisic, silhouette

« External metrics can be useful f we have labeled test data: e.g., V-mensure,
Bed F-score

« The results can be tested on the target application: e.g, word-clusters
evaluated based on their effect on parsing aceuracy

« Human judgments, manual evaluation — ‘looks good to me”

Clustering evaluation
{ntenal metric xample:slhcuste
N bli) —ali]
(a0, o)
L)
ali) average distance betsveen object  and and 2

the same cluster
b(i) average distance between object  and and
objects in the closest cluster

Uumnn;, evaluation

Cluster1 Cluster2

+ We want clusters that contain
bers of a single gold-standard
class (homogeniety)

We want all members. ©
ina single cluster (completeness)

Note the similarity with precision and recall

Clustering: some closing nott

+ Clustering evaluation s not straightforward

+ Some clustering methods are unstable, slight changes in the data or parameter
choices may change the results drastically
=

phoduing probabllisne dencograms b ranning cusenng with dierent
options

+ Reading suggestion: James ct al. (2023, scction 124)
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