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Unsupervised learning

• In unsupervised learning, we do not have labels in our training data
• Our aim is to find useful patterns/structure in the data

– for exploratory study of the data
– for augmenting / complementing supervised methods

• Close relationships with ‘data mining’, ‘data science / analytics’, ‘knowledge
discovery’

• Most unsupervised methods can be cast as graphical models with hidden
variables

• Evaluation is difficult: no ‘true’ labels/values
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Today’s lecture (and later)

• Today: clustering, finding related groups of instances
– k-means
– hierarchical clustering
– evaluation

• Later: clustering, finding related groups of instances
– Density estimation: finding a probability distribution that explains the data
– Dimensionality reduction: find an accurate/useful lower dimensional

representation of the data
– Unsupervised learning in ANNs (RBMs, autoencoders)
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Clustering: why do we do it?

• The aim is to find groups of instances/items that are similar to each other
• Applications include

– Clustering languages, dialects for determining their relations
– Clustering (literary) texts, for e.g., authorship attribution
– Clustering words for e.g., better parsing
– Clustering documents, e.g., news into topics
– …
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Clustering in two dimensional space

x1

x2

• Unlike classification, we do not have
labels

• We want to find ‘natural’ groups in
the data

• Intuitively, similar or closer data
points are grouped together
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Similarity and distance

• The notion of distance (similarity) is important in clustering. A distance
measure D,

– is symmetric: D(a, b) = D(b, a)
– non-negative: D(a, b) ⩾ 0

for all a, b, and it D(a, b) = 0 iff a = b

– obeys triangle inequality: D(a, b) +D(b, c) ⩾ D(a, c)

• The choice of distance is application specific
• We will often face with defining distance measures between linguistic units

(letters, words, sentences, documents, …)
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Distance measures in Euclidean space

• Euclidean distance:

∥a− b∥ =

√√√√ k∑
j=1

(aj − bj)2

• Manhattan distance:

∥a− b∥1 =

k∑
j=1

|aj − bj|
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How to do clustering
Most clustering algorithms try to minimize the scatter within each cluster. Which
is equivalent to maximizing the scatter between clusters.
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K-means algorithm

K-means is a popular method for clustering.
1. Randomly choose centroids, m1, . . . ,mK, representing K clusters
2. Repeat until convergence

– Assign each data point to the cluster of the nearest centroid
– Re-calculate the centroid locations based on the assignments

Effectively, we are finding a local minimum of the sum of squared Euclidean
distance within each cluster
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K-means clustering: visualization

x1

x2

• The data
• Set cluster centroids randomly
• Assign data points to the closest

centroid
• Recalculate the centroids
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K-means: some issues

• K-means requires the data to be in an Euclidean space
• K-means is sensitive to outliers
• The results are sensitive to initialization

– There are some smarter ways to select initial points
– One can do multiple initializations, and pick the best

(with lowest within-group squares)
• It works well with approximately equal-size round-shaped clusters
• We need to specify number of clusters in advance
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How many clusters?

• The number of clusters is defined for some problems, e.g., classifying news
into a fixed set of topics/interests

• For others, there is no clear way to select the best number of clusters
• The error (within cluster scatter) decreases with increasing number of

clusters, using a test set or cross validation is not useful either
• A common approach is clustering for multiple K values, and picking where

there is an ‘elbow’ in the graph of the error function
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How many clusters?

K

J(w)

1 2 3 4 5 6 7 8 9

40

80

120

160

This plot is sometimes called a scree plot.
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K-medoids

• K-medoids algorithm is an alternation of K-means
• Instead of calculating centroids, we try to find most typical data point

(medoids) at each iteration
• K-medoids can work with distances, does not need feature vectors to be in an

Euclidean space
• It is less sensitive to outliers
• It is computationally more expensive than K-means
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Hierarchical clustering

• Instead of a flat division to clusters as in K-means, hierarchical clustering
builds a hierarchy based on similarity of the data points

• There are two main ‘modes of operation’:
Bottom-up or agglomerative clustering

• starts with individual data points,
• merges the clusters until all data is in a single cluster

Top-down or divisive clustering
• starts with a single cluster,
• and splits until all leaves are single data points
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Hierarchical clustering

• Hierarchical clustering operates on distances (or similarities)
• The result is a binary tree called dendrogram
• Dendrograms are easy to interpret (especially if data is hierarchical)
• The algorithm does not commit to the number of clusters K from the start, the

dendrogram can be ‘cut’ at any height for determining the clusters
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Agglomerative clustering

1. Compute the similarity/distance
matrix

2. Assign each data point to its own
cluster

3. Repeat until no clusters left to merge

– Pick two clusters that are most
similar to each other

– Merge them into a single cluster 1 2 3 4 5
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Agglomerative clustering demonstration

1 2 3 4 5
x1

x2

1 2

3

4

5
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How to calculate between cluster distances

Complete maximal inter-cluster distance
Single minimal inter-cluster distance

Average mean inter-cluster distance
Centroid distance between the

centroids

x1

x2

1 2

3

4

5

Note: we only need distances, (feature) vectors are not necessary
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Clustering evaluation

Evaluating clustering results is often non-trivial
• Internal evaluation is based a metric that aims to indicate ‘good clustering’:

e.g., Dunn index, gap statistic, silhouette
• External metrics can be useful if we have labeled test data: e.g., V-measure,
B3ed F-score

• The results can be tested on the target application: e.g., word-clusters
evaluated based on their effect on parsing accuracy

• Human judgments, manual evaluation – ‘looks good to me’
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Clustering evaluation
internal metric example: silhouette

si =
b(i) − a(i)

max(a(i), b(i))
where
a(i) average distance between object i and and

objects in the same cluster
b(i) average distance between object i and and

objects in the closest cluster
x1

x2

1 2

3

4

5
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Clustering evaluation
external metrics: general intution

• We want clusters that contain
members of a single gold-standard
class (homogeniety)

• We want all members of a class to be
in a single cluster (completeness)

Cluster 1 Cluster 2 Cluster 3

Note the similarity with precision and recall.
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Clustering: some closing notes

• Clustering evaluation is not straightforward
• Some clustering methods are unstable, slight changes in the data or parameter

choices may change the results drastically
• Approaches against instability include some validation methods, or

producing ‘probabilistic’ dendrograms by running clustering with different
options

• Reading suggestion: James et al. (2023, section 12.4)
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