Information theory

Information theory
Statistcal Natural Language Processing 1

« Information theory is concerned with measurement, storage and transmission
Gagn Caltekin mation N
e « Ithas its roots in communication theory, but is applied to many different
Sty Sprachvtsamechatt fields NLP.
+ We will revisit some of the major concepts
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« This simple model has many applications in NLP, including in speech h 10000000
recognition and machine translation
Coding example Self information / surprisal
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Why log? Entropy
Entropy is a measure of the uncertainty of a random variable:
« Reminder: logarithms transform exponential relaions to inear relations.
HX) = Y P(x)logPix)
logab=loga+logb  loga" =nloga 5
J— + Entropy is the lower bound on the best average code lenth, given the
o distribution P that generates the data
 Numberof psile movord cmbnatons b cxponenaly (ice) mor « Entropy s average surprisal: H(X) = E[-log P(x])
iiEmanbexlof posibiel(yegll sl comb gl + It generalizes to continuous distributions as well (replace sum with integral
o e e e T e el e Gt A th integral)
« Working with logarithms is more numerically stable Entropy is about a distribution, while surprisal is about individual events
Example: entropy of a Bernoulli distribution Entropy: demonstration
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Ent tropy: demonstration Entropy: demonstration
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Entropy: demonstration Entropy: demonstration

the distribstion maters the distribition maters
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Pointwise mutual information Mutual information
f tion (PMI) between defined al two random variables
Plx,y) Pl
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« e P PP s g 3 T T
e e A T T T + PM1s defined on events, M1 i defined on distributions
~ if events cooccur less than they would occur by chance. « Note the similarity with the covariance (or correlation)
« Pointwise mutual information is symmetric PMI(X, Y} = PMI(Y,X] « Unlike correlation, muma] mformdllul\ is
© P often used a8 measure ofasoclation (e, between words) in st defnd o
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Conditional entropy Entropy, mutual information and conditional entropy
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« HIX]Y) = H(X) if random variables are independent
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random variable.
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Cross entropy Perplexity

Cross entropy measures entropy of a distribution P, under another distribution Q. Perplexity is the exporential version of (cross) entropy:

H(P,Q) =~ Plx)logQlx) PP(X) = 2M(X]
« Itoften arises in the context of approximation: + Perplexity “undoes’ the logarithimic scaling
£ we approximate the true distribution P with Q + Perplexity easier o interpret in some contexts
« Ttis always larger than H(P: iti the (non-op i « Especially for language models, s interpretation is the average ‘branching
P coded using Q factor’
ol ML for

Predict the next word: {S) The perplexity of a random variable {/S)

Note: the notation H(X, Y) i also used for oiut entropy.

KL-divergence / relative entropy Continuious random variables and differential entropy

4Q pport, Kullback-L gence of " .
o or e gy o b 0 s kv o . variables, veral 3
G oy ofPgen 0 but we can integrate over the ranges of outcomes

 Information entropy (and allrelevant messures) enerlizes o the
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1Q) = 3P G continsous distrbtions
+ Dy measures the amount of extra bis needed when Q is used instead of P WX) = L plx)logp(x)
0 EAIDSEIRE=T)  The entropy of continuous variables i caled difirential ntropy
+ Used for measuring the difference between two distrbutions

+ Differential entropy is typically measures in nafs
+ Note: itis not symmetric (not a distance meastre) FT




Short divergence: distance measure (again)

Adistance function, or a metric, satisfies:
«dixy) >0
- dlxy) = dly,x)

~dixy)=0 & x=y

« dlxy) < dlx,z) £ dizy)

We will encounter measures/metrics frequently in this course.

Summary

+ Information theory has many applications in NLP and ML
+ We reviewed a number of important concepts from the information theory
Self information Entropy
= Pointuvise MI - Mutualinformation

- Cross entropy - Kl-divergence

Next
+ Statistical estimation and regression (again)

Further reading

« The original article from Shannon (1948), which started the field, is also quite
easy toread

+ MacKay (2003) covers most of the topics discussed, in a way quite relevant to
machine learning, The complete book is available freely online (see the link
below)
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http://www.inference.phy.cam.ac.uk/itprnn/book.html
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