

Cagrı Çeltekin

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2025/2026

Information theory

- Information theory is concerned with measurement, storage and transmission of information
- It has its roots in communication theory, but is applied to many different fields NLP
- We will revisit some of the major concepts

version: 0.4.27 (909) • 08/2025 12:34

© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 1 / 20

Noisy channel model

- We want codes that are efficient: we do not want to waste the channel bandwidth
- We want codes that are resilient to errors: we want to be able to detect and correct errors
- This simple model has many applications in NLP, including in speech recognition and machine translation

© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 2 / 20

Winter Semester 2025/2026 2 / 20

Coding example

binary coding of an eight-letter alphabet

letter	code
a	00000001
b	00000010
c	00000100
d	00000100
e	00001000
f	00010000
g	01000000
h	10000000

- We can encode an 8-letter alphabet with 8 bits using one-hot representation
- Can we do better than one-hot coding?
- Can we do even better?

© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 3 / 20

Winter Semester 2025/2026 3 / 20

Why log?

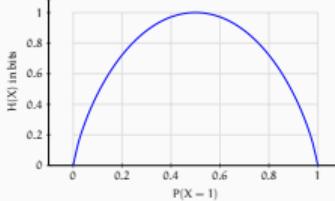
- Reminder: logarithms transform exponential relations to linear relations
 $\log ab = \log a + \log b$
 $\log a^n = n \log a$
- In most systems, linear increase in capacity increases possible outcomes exponentially
 - Number of possible n-word combinations is exponentially (twice) more than the number of possible (n-1)-word combinations
 - But we expect information to increase linearly, not exponentially
- Working with logarithms is more numerically stable

© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 4 / 20

Winter Semester 2025/2026 4 / 20

Example: entropy of a Bernoulli distribution



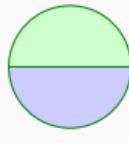
© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 5 / 20

Winter Semester 2025/2026 5 / 20

Entropy: demonstration

increasing number of outcomes increases entropy



$$H = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1$$

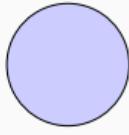
© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 6 / 20

Winter Semester 2025/2026 6 / 20

Entropy: demonstration

increasing number of outcomes increases entropy



$$H = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} = 2$$

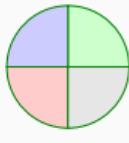
© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 7 / 20

Winter Semester 2025/2026 7 / 20

Entropy: demonstration

increasing number of outcomes increases entropy



$$H = -\frac{1}{8} \log_2 \frac{1}{8} - \frac{1}{8} \log_2 \frac{1}{8} = 3$$

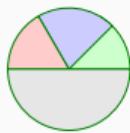
© Cagrı Çeltekin, MII / University of Tübingen

Winter Semester 2025/2026 8 / 20

Winter Semester 2025/2026 8 / 20

Entropy: demonstration

the distribution matters



$$H = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} = 1.792481250360578$$

Back to coding letters

letter	prob	code
a	$\frac{1}{8}$	000
b	$\frac{1}{8}$	001
c	$\frac{1}{8}$	010
d	$\frac{1}{8}$	011
e	$\frac{1}{8}$	100
f	$\frac{1}{8}$	101
g	$\frac{1}{8}$	110
h	$\frac{1}{8}$	111

Uniform distribution has the maximum uncertainty, hence the maximum entropy.

Pointwise mutual information

Pointwise mutual information (PMI) between two events is defined as

$$\text{PMI}(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$

- Reminder: $P(x, y) = P(x)P(y)$ if two events are independent
- if the events are independent
- + if events cooccur more than they would occur by chance
- if events cooccur less than they would occur by chance
- Pointwise mutual information is symmetric $\text{PMI}(X, Y) = \text{PMI}(Y, X)$
- PMI is often used as a measure of association (e.g., between words) in computational/corpus linguistics

Conditional entropy

Conditional entropy is the entropy of a random variable conditioned on another random variable.

$$\begin{aligned} H(X|Y) &= - \sum_{y \in Y} P(y) H(X|Y=y) \\ &= - \sum_{x \in X, y \in Y} P(x, y) \log P(x|y) \end{aligned}$$

- $H(X|Y) = H(X)$ if random variables are independent
- Conditional entropy is lower if random variables are dependent

Cross entropy

Cross entropy measures entropy of a distribution P under another distribution Q .

$$H(P, Q) = - \sum_x P(x) \log Q(x)$$

- It often arises in the context of approximation:
 - if we approximate the true distribution P with Q
- It is always larger than $H(P)$: it is the (non-optimum) average code-length of P coded using Q
- It is a common error function in ML for categorical distributions

Note: the notation $H(X, Y)$ is also used for joint entropy.

KL-divergence / relative entropy

For two distribution P and Q with same support, Kullback–Leibler divergence of Q from P (or relative entropy of P given Q) is defined as

$$D_{KL}(P||Q) = - \sum_x P(x) \log_2 \frac{P(x)}{Q(x)}$$

- D_{KL} measures the amount of extra bits needed when Q is used instead of P
- $D_{KL}(P||Q) = H(P, Q) - H(P)$
- Used for measuring the difference between two distributions
- Note: it is not symmetric (not a distance measure)

Entropy: demonstration

the distribution matters

$$H = -\frac{1}{4} \log_2 \frac{3}{4} - \frac{1}{12} \log_2 \frac{1}{12} - \frac{1}{12} \log_2 \frac{1}{12} - \frac{1}{12} \log_2 \frac{1}{12} = 1.207518749639422$$

Back to coding letters

letter	prob	code
a	$\frac{1}{4}$	0
b	$\frac{1}{4}$	10
c	$\frac{1}{4}$	110
d	$\frac{1}{4}$	1110
e	$\frac{1}{4}$	111100
f	$\frac{1}{4}$	111101
g	$\frac{1}{4}$	111110
h	$\frac{1}{4}$	111111

Uniform distribution has the maximum uncertainty, hence the maximum entropy.

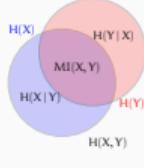
Mutual information

Mutual information measures mutual dependence between two random variables

$$MI(X, Y) = \sum_x \sum_y P(x, y) \log_2 \frac{P(x, y)}{P(x)P(y)}$$

- MI is the average (expected value) of PMI
- PMI is defined on events, MI is defined on distributions
- Note the similarity with the covariance (or correlation)
- Unlike correlation, mutual information is
 - also defined for discrete variables
 - also sensitive the non-linear dependence

Entropy, mutual information and conditional entropy



Perplexity

Perplexity is the exponential version of (cross) entropy:

$$PP(X) = 2^{H(X)}$$

- Perplexity 'undoes' the logarithmic scaling
- Perplexity easier to interpret in some contexts
- Especially for language models, its interpretation is the average 'branching factor'

Predict the next word: (S) The perplexity of a random variable (/S)

Continuous random variables and differential entropy

- For continuous random variables, we cannot sum over all possible outcomes, but we can integrate over the ranges of outcomes
- Information entropy (and all relevant measures) generalizes to the continuous distributions

$$h(X) = - \int_X p(x) \log p(x)$$

- The entropy of continuous variables is called **differential entropy**
- Differential entropy is typically measured in **nats**

Short divergence: distance measure (again)

A *distance function*, or a *metric*, satisfies:

- $d(x, y) \geq 0$
- $d(x, y) = d(y, x)$
- $d(x, y) = 0 \iff x = y$
- $d(x, y) \leq d(x, z) + d(z, y)$

We will encounter measures/metrics frequently in this course.

Summary

• Information theory has many applications in NLP and ML.

• We reviewed a number of important concepts from the information theory

<ul style="list-style-type: none"> - Self information - Pointwise MI - Cross entropy 	<ul style="list-style-type: none"> - Entropy - Mutual information - KL-divergence
---	--

Next:

- Statistical estimation and regression (again)

Further reading

- The original article from Shannon (1948), which started the field, is also quite easy to read
- MacKay (2003) covers most of the topics discussed, in a way quite relevant to machine learning. The complete book is available freely online (see the link below)

 MacKay, David J. C. (2003). *Information Theory, Inference and Learning Algorithms*. Cambridge University Press. note: ISBN 0511213149, 9780511213147. <http://www.inference.phy.cam.ac.uk/inference/book.html>

 Shannon, Claude E. (1948). "A mathematical theory of communication". In: *Bell Systems Technical Journal* 27, pp. 379–423, 623–656.