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Information theory

Information theory

 Information theory is concerned with measurement, storage and transmission
of information

o It has its roots in communication theory, but is applied to many different
tields NLP

o We will revisit some of the major concepts
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Information theory

Noisy channel model
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o We want codes that are efficient: we do not want to waste the channel

bandwidth

¢ We want codes that are resilient to errors: we want to be able to detect and

correct errors

o This simple model has many applications in NLP, including in speech

recognition and machine translation
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Information theory

Coding example
binary coding of an eight-letter alphabet

o We can encode an 8-letter alphabet with 8 bits using
one-hot representation

o Can we do better than one-hot coding?
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Information theory

Coding example
binary coding of an eight-letter alphabet

e We can encode an 8-letter alphabet with 8 bits using
one-hot representation

o Can we do better than one-hot coding?

o« Can we do even better?
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Information theory

Self information / surprisal

Self information (or surprisal) associated with an event x is

I(x) =log ng) = —log P(x)

o If the event is certain, the information (or surprise) associated with it is 0

o Low probability (surprising) events have higher information content
o Base of the log determines the unit of information

2 bits
e nats
10 dit, ban, hartley
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Information theory

Why log?

o Reminder: logarithms transform exponential relations to linear relations
log ab =log a + logb loga™ =nloga

 In most systems, linear increase in capacity increases possible outcomes
exponentially

— Number of possible n-word combinations is exponentially (twice) more than
the number of possible (n — 1)-word combinations
— But we expect information to increase linearly, not exponentially

« Working with logarithms is more numerically stable
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Information theory

Entropy

Entropy is a measure of the uncertainty of a random variable:

ZP ) log P(x

« Entropy is the lower bound on the best average code length, given the
distribution P that generates the data

o Entropy is average surprisal: H(X) = E[—log P(x)]

o It generalizes to continuous distributions as well (replace sum with integral)

Entropy is about a distribution, while surprisal is about individual events
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Information theory

Example: entropy of a Bernoulli distribution
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy

H=—log1=0
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Information theory

Entropy: demonstration
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Information theory

Entropy: demonstration
the distribution matters
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Information theory

Entropy: demonstration
the distribution matters

H=—tlog, 3 — tlog, ¢ — Llog, + — ¢ log, 1 =1.792481250360578
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Information theory

Entropy: demonstration
the distribution matters

H=—3log, 2 — 5log, 75 — 75 logs 15 — 75 logy 15 = 1.207 518 749 639422
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Information theory

Back to coding letters @

o Can we do better? letter prob code

a z 000

b 3 001

c . 010

d . 011

3 100

f . 101

g 3 110

h . 111
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Information theory

Back to coding letters

¢ Can we do better?

e No. H = 3 bits, we need 3 bits on
average
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Information theory

Back to coding letters @

o Can we do better? letter prob code
e No. H = 3 bits, we need 3 bits on ]
average a 2
1
o If the probabilities were different, b q
could we do better? C %
1
d 76
1
€ 61
1
f 67
a1
& 64
1
h o4
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Information theory

Back to coding letters @

e Can we do better? letter prob code
e No. H = 3 bits, we need 3 bits on |
average a 2 0
o If the probabilities were different, b 7 10
could we do better? C % 110
e Yes. Now H = 2 bits, we need 2 bits d 1 1110
16
on average :
ez 111100
Uniform distribution has the maximum f 1 111101
uncertainty, hence the maximum entropy. 6]4
g a1 111110
1
h ez 11111
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Information theory

Pointwise mutual information
Pointwise mutual information (PMI) between two events is defined as

P
PMI(x,y) = log, b (,y)

(x)P(y)

e Reminder: P(x,y) = P(x)P(y) if two events are independent
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Information theory

Pointwise mutual information

Pointwise mutual information (PMI) between two events is defined as

P
PMI(x,y) = log, b (,y)

(x)P(y)

e Reminder: P(x,y) = P(x)P(y) if two events are independent PMI

0 if the events are independent
+ if events cooccur more than they would occur by chance
— if events cooccur less than they would occur by chance

 Pointwise mutual information is symmetric PMI(X,Y) = PMI(Y, X)

o PMl is often used as a measure of association (e.g., between words) in
computational/corpus linguistics
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Information theory

Mutual information

Mutual information measures mutual dependence between two random variables

MIX,Y) =Y 3 Px,y)log, m
x oy

Ml is the average (expected value of) PMI
PMI is defined on events, MI is defined on distributions

Note the similarity with the covariance (or correlation)
Unlike correlation, mutual information is

— also defined for discrete variables
— also sensitive the non-linear dependence
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Information theory

Conditional entropy

Conditional entropy is the entropy of a random variable conditioned on another
random variable.

HX[Y) = > PHXX|Y=y)
yey
= — ) Pxy)logP(x|y)
xeX,yey

o H(X|Y) = H(X) if random variables are independent

« Conditional entropy is lower if random variables are dependent
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Information theory

Entropy, mutual information and conditional entropy
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Information theory

Cross entropy
Cross entropy measures entropy of a distribution P, under another distribution Q.

H(P,Q) =—) P(x)logQ(x)

o It often arises in the context of approximation:
— if we approximate the true distribution P with Q

o Itis always larger than H(P): it is the (non-optimum) average code-length of
P coded using Q
o Itis a common error function in ML for categorical distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Information theory

Perplexity

Perplexity is the exponential version of (cross) entropy:
PP(X) = 2HX)

« Perplexity ‘undoes’ the logarithimic scaling
o Perplexity easier to interpret in some contexts

o Especially for language models, its interpretation is the average ‘branching
factor’
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Information theory

Perplexity

Perplexity is the exponential version of (cross) entropy:
PP(X) = 2HX)

« Perplexity ‘undoes’ the logarithimic scaling
o Perplexity easier to interpret in some contexts

o Especially for language models, its interpretation is the average ‘branching
factor’

Predict the next word: (S) The perplexity of a random variable
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Information theory

Perplexity

Perplexity is the exponential version of (cross) entropy:
PP(X) = 2HX)

« Perplexity ‘undoes’ the logarithimic scaling
o Perplexity easier to interpret in some contexts

o Especially for language models, its interpretation is the average ‘branching
factor’

Predict the next word: (S) The perplexity of a random variable (/S)
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Information theory

KL-divergence / relative entropy

For two distribution P and Q with same support, Kullback-Leibler divergence of
Q from P (or relative entropy of P given Q) is defined as

P(x)

Qx)

Dk (P|Q) Z P(x) log,

e Dk measures the amount of extra bits needed when Q is used instead of P

Dk (P||Q) = H(P, Q) — H(P)

« Used for measuring the difference between two distributions

Note: it is not symmetric (not a distance measure)
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Information theory

Continuious random variables and differential entropy

« For continous random variables, we cannot sum over all possible outcomes,
but we can integrate over the ranges of outcomes

o Information entropy (and all relevant measures) generalizes to the
continuous distributions

h(X) = —JX p(x) logp(x)

 The entropy of continuous variables is called differential entropy

« Differential entropy is typically measures in nats

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2025/2026 18 /20



Information theory

Short divergence: distance measure (again)

A distance function, or a metric, satisfies:
e d(x,y) >0
o d(X,y) = d(y,X)
e dx,y) =0 & x=y
e d(x,y) < d(x,z) + d(z,y)
We will encounter measures/metrics frequently in this course.
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Information theory

Summary

o Information theory has many applications in NLP and ML

o We reviewed a number of important concepts from the information theory

— Self information - Entropy
— Pointwise MI - Mutual information
- Cross entropy - KL-divergence
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Information theory

Summary

o Information theory has many applications in NLP and ML

o We reviewed a number of important concepts from the information theory

— Self information - Entropy
— Pointwise MI - Mutual information
- Cross entropy - KL-divergence

Next:

o Statistical estimation and regression (again)
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Further reading

o The original article from Shannon (1948), which started the field, is also quite
easy to read

« MacKay (2003) covers most of the topics discussed, in a way quite relevant to
machine learning. The complete book is available freely online (see the link
below)

[=)

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. isen: 978-05-2164-298-9. urL:
http://www.inference.phy.cam.ac.uk/itprnn/book.html.

@ Shannon, Claude E. (1948). “A mathematical theory of communication”. In: Bell Systens Technical Journal 27, pp. 379-423, 623-656.
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