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Information theory

Information theory

• Information theory is concerned with measurement, storage and transmission
of information

• It has its roots in communication theory, but is applied to many different
fields NLP

• We will revisit some of the major concepts
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Information theory

Noisy channel model

a encoder decoder a

10000010 10010010

noisy
channel

• We want codes that are efficient: we do not want to waste the channel
bandwidth

• We want codes that are resilient to errors: we want to be able to detect and
correct errors

• This simple model has many applications in NLP, including in speech
recognition and machine translation
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Information theory

Coding example
binary coding of an eight-letter alphabet

• We can encode an 8-letter alphabet with 8 bits using
one-hot representation

• Can we do better than one-hot coding?

• Can we do even better?

letter code
a 00000001

b 00000010

c 00000100

d 00001000

e 00010000

f 00100000

g 01000000

h 10000000
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Information theory

Self information / surprisal

Self information (or surprisal) associated with an event x is

I(x) = log 1

P(x)
= − log P(x)

• If the event is certain, the information (or surprise) associated with it is 0
• Low probability (surprising) events have higher information content
• Base of the log determines the unit of information

2 bits
e nats
10 dit, ban, hartley
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Information theory

Why log?

• Reminder: logarithms transform exponential relations to linear relations

logab = loga+ log b logan = n loga

• In most systems, linear increase in capacity increases possible outcomes
exponentially

– Number of possible n-word combinations is exponentially (twice) more than
the number of possible (n− 1)-word combinations

– But we expect information to increase linearly, not exponentially
• Working with logarithms is more numerically stable
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Information theory

Entropy

Entropy is a measure of the uncertainty of a random variable:

H(X) = −
∑
x

P(x) log P(x)

• Entropy is the lower bound on the best average code length, given the
distribution P that generates the data

• Entropy is average surprisal: H(X) = E[− log P(x)]
• It generalizes to continuous distributions as well (replace sum with integral)

Entropy is about a distribution, while surprisal is about individual events
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Information theory

Example: entropy of a Bernoulli distribution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(X = 1)

H
(X

)
in

bi
ts

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 7 / 20



Information theory

Entropy: demonstration
increasing number of outcomes increases entropy

H = − log 1 = 0H = −1
2

log2 1
2
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Information theory

Entropy: demonstration
the distribution matters
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Information theory

Back to coding letters

• Can we do better?

• No. H = 3 bits, we need 3 bits on
average

• If the probabilities were different,
could we do better?

• Yes. Now H = 2 bits, we need 2 bits
on average

Uniform distribution has the maximum
uncertainty, hence the maximum entropy.

letter prob code

a 1
8

000

b 1
8

001

c 1
8

010

d 1
8

011

e 1
8

100

f 1
8

101

g 1
8

110

h 1
8

111
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Information theory

Back to coding letters

• Can we do better?
• No. H = 3 bits, we need 3 bits on

average
• If the probabilities were different,

could we do better?

• Yes. Now H = 2 bits, we need 2 bits
on average

Uniform distribution has the maximum
uncertainty, hence the maximum entropy.

letter prob code

a 1
2

b 1
4

c 1
8

d 1
16

e 1
64

f 1
64

g 1
64

h 1
64
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Information theory

Back to coding letters

• Can we do better?
• No. H = 3 bits, we need 3 bits on

average
• If the probabilities were different,

could we do better?
• Yes. Now H = 2 bits, we need 2 bits

on average

Uniform distribution has the maximum
uncertainty, hence the maximum entropy.

letter prob code

a 1
2

0

b 1
4

10

c 1
8

110

d 1
16

1110

e 1
64

111100

f 1
64

111101

g 1
64

111110

h 1
64

111111
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Information theory

Pointwise mutual information

Pointwise mutual information (PMI) between two events is defined as

PMI(x, y) = log2
P(x, y)

P(x)P(y)

• Reminder: P(x, y) = P(x)P(y) if two events are independent

PMI
0 if the events are independent
+ if events cooccur more than they would occur by chance
− if events cooccur less than they would occur by chance

• Pointwise mutual information is symmetric PMI(X, Y) = PMI(Y, X)

• PMI is often used as a measure of association (e.g., between words) in
computational/corpus linguistics
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Information theory

Mutual information

Mutual information measures mutual dependence between two random variables

MI(X, Y) =
∑
x

∑
y

P(x, y) log2
P(x, y)

P(x)P(y)

• MI is the average (expected value of) PMI
• PMI is defined on events, MI is defined on distributions
• Note the similarity with the covariance (or correlation)
• Unlike correlation, mutual information is

– also defined for discrete variables
– also sensitive the non-linear dependence

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 12 / 20



Information theory

Conditional entropy

Conditional entropy is the entropy of a random variable conditioned on another
random variable.

H(X | Y) =
∑
y∈Y

P(y)H(X | Y = y)

= −
∑

x∈X,y∈Y

P(x, y) log P(x | y)

• H(X | Y) = H(X) if random variables are independent
• Conditional entropy is lower if random variables are dependent
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Information theory

Entropy, mutual information and conditional entropy

H(X)

H(Y)
H(X | Y)

H(Y | X)

MI(X, Y)

H(X, Y)
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Information theory

Cross entropy

Cross entropy measures entropy of a distribution P, under another distribution Q.

H(P,Q) = −
∑
x

P(x) logQ(x)

• It often arises in the context of approximation:
– if we approximate the true distribution P with Q

• It is always larger than H(P): it is the (non-optimum) average code-length of
P coded using Q

• It is a common error function in ML for categorical distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Information theory

Perplexity

Perplexity is the exponential version of (cross) entropy:

PP(X) = 2H(X)

• Perplexity ‘undoes’ the logarithimic scaling
• Perplexity easier to interpret in some contexts
• Especially for language models, its interpretation is the average ‘branching

factor’

Predict the next word:

⟨S⟩ The perplexity of a random variable ⟨/S⟩
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Information theory

KL-divergence / relative entropy

For two distribution P and Q with same support, Kullback–Leibler divergence of
Q from P (or relative entropy of P given Q) is defined as

DKL(P∥Q) =
∑
x

P(x) log2
P(x)

Q(x)

• DKL measures the amount of extra bits needed when Q is used instead of P
• DKL(P∥Q) = H(P,Q) −H(P)

• Used for measuring the difference between two distributions
• Note: it is not symmetric (not a distance measure)
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Information theory

Continuious random variables and differential entropy

• For continous random variables, we cannot sum over all possible outcomes,
but we can integrate over the ranges of outcomes

• Information entropy (and all relevant measures) generalizes to the
continuous distributions

h(X) = −

∫
X

p(x) log p(x)

• The entropy of continuous variables is called differential entropy
• Differential entropy is typically measures in nats
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Information theory

Short divergence: distance measure (again)

A distance function, or a metric, satisfies:
• d(x, y) ⩾ 0

• d(x, y) = d(y, x)

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) ⩽ d(x, z) + d(z, y)

We will encounter measures/metrics frequently in this course.
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Information theory

Summary

• Information theory has many applications in NLP and ML
• We reviewed a number of important concepts from the information theory

– Self information
– Pointwise MI
– Cross entropy

– Entropy
– Mutual information
– KL-divergence

Next:
• Statistical estimation and regression (again)
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Further reading

• The original article from Shannon (1948), which started the field, is also quite
easy to read

• MacKay (2003) covers most of the topics discussed, in a way quite relevant to
machine learning. The complete book is available freely online (see the link
below)

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. ISBN: 978-05-2164-298-9. URL:
http://www.inference.phy.cam.ac.uk/itprnn/book.html.

Shannon, Claude E. (1948). “A mathematical theory of communication”. In: Bell Systems Technical Journal 27, pp. 379–423, 623–656.
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