Linear algebra: vectors, matrices, dot product Statistical Natural Language Processing 1

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2025/2026

Some practical remarks (recap)

- Course web page: https://snlp1-2025.github.io (public) https://github.com/snlp1-2025/snlp1/ (private)
- If you haven't done already, please fill in the questionnaire on Moodle

Today's lecture

- Some concepts from linear algebra
 - Vectors
 - Dot product
 - Matrices

This is only a high-level, informal introduction/refresher.

Linear algebra

Linear algebra is the field of mathematics that studies *vectors* and *matrices*.

• A vector is an ordered sequence of numbers

$$\mathbf{v} = (6, 17)$$

A matrix is a rectangular arrangement of numbers

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

• A well-known application of linear algebra is solving a set of linear equations

$$2x_1 + x_2 = 6 \\ x_1 + 4x_2 = 17$$
 \iff
$$\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 17 \end{bmatrix}$$

Consider an application counting words in a document

 the	and	of	to	in	•••	
121	106	91	83	43		

Consider an application counting words in a document

	the	and	of	to	in	
(121	106	91	83	43)

Consider an application counting words in multiple documents

	the	and	of	to	in	
document ₁	121	106	91	83	43	
document ₂	142	136	86	91	69	
document ₃	107	94	41	47	33	
	•••	•••	•••	•••	•••	

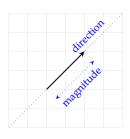
You should already be seeing vectors and matrices here.

- Insights from linear algebra are helpful in understanding many NLP methods
- In machine learning, we typically represent input, output, parameters as vectors or matrices (or tensors)
- It makes notation concise and manageable
- In programming, many machine learning libraries make use of vectors and matrices explicitly
- In programming, vector-matrix operations correspond to loops
- 'Vectorized' operations may run much faster on GPUs, and on modern CPUs

Vectors

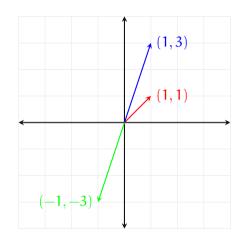
- Vectors are objects with a magnitude and a direction
- We represent vectors with an ordered list of numbers v = (v₁, v₂,...v_n)
- The number n (the number of elements or entries of the vector) is its dimension
- We often call an n dimensional vector as n-vector
- The vector of n real numbers is said to be in \mathbb{R}^n $(v \in \mathbb{R}^n)$
- Typical notation for vectors:

$$\mathbf{v} = \vec{\mathbf{v}} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix}$$



Geometric interpretation of vectors

- Geometrically, vectors are represented with arrows from the origin in the Euclidean space
- The endpoint of the vector $\mathbf{v} = (v_1, v_2)$ correspond to the Cartesian coordinates defined by v_1, v_2
- These generally make sense for two or three-dimensional spaces
- The intuitions often (!) generalize to higher dimensional spaces



Some special vectors

- The zero vector, 0, is the vector whose all entries are 0
- The vector of all 1s, 1, is also often interesting
- A more interesting set of vectors is *standard unit vectors* (examples below are 4-dimensional standard unit vectors)

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

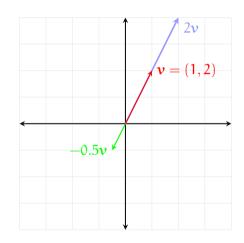
- n-dimensional standard unit vectors form the standard basis for n-dimensional (vector) space
- In some textbooks, standard unit vectors of two (and three) dimensions are represented by $\hat{\imath}$, $\hat{\jmath}$ and \hat{k}
- In ML they are related to *one-hot representation*: we represent categorical predictors (variables) with n values as n-dimensional standard unit vectors

Multiplying a vector with a scalar

• For a vector $\mathbf{v} = (v_1, v_2)$ and a scalar \mathbf{a} ,

$$\mathbf{av} = (\mathbf{av}_1, \mathbf{av}_2)$$

- multiplying with a scalar 'scales' the vector
- We can use the notation a1 for a vector whose all entries are a



Vector addition and subtraction

For vectors
$$\mathbf{v} = (v_1, v_2)$$
 and $\mathbf{u} = (u_1, u_2)$

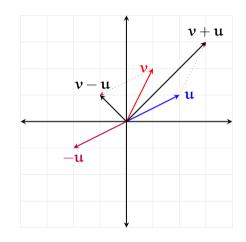
•
$$\mathbf{v} + \mathbf{u} = (v_1 + u_1, v_2 + u_2)$$

$$(1,2) + (2,1) = (3,3)$$

•
$$v - u = v + (-u)$$

$$(1,2) - (2,1) = (-1,1)$$

• For any vector \mathbf{v} , $\mathbf{v} + \mathbf{0} = \mathbf{v}$



Properties of vector operations

• Vector addition and scalar multiplication is commutative

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 $a\mathbf{u} = \mathbf{u}a$

 Scalar multiplication and vector addition also show the following distributive properties

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$
$$(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$

Linearity and linear functions

- A linear function $f(\cdot)$ (or mapping) follows
 - f(av) = af(v) (homogeneity)
 - $f(\mathbf{v} + \mathbf{u}) = f(\mathbf{v}) + f(\mathbf{u})$ (additivity)
 - combined together: f(av + bu) = af(v) + bf(u)
- A combination of vectors as in

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n$$
.

is called a linear combination (another vector)

Linearity and linear functions

- A linear function $f(\cdot)$ (or mapping) follows
 - f(av) = af(v) (homogeneity)
 - $f(\mathbf{v} + \mathbf{u}) = f(\mathbf{v}) + f(\mathbf{u})$ (additivity)
 - combined together: f(av + bu) = af(v) + bf(u)
- A combination of vectors as in

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n$$
.

is called a linear combination (another vector)

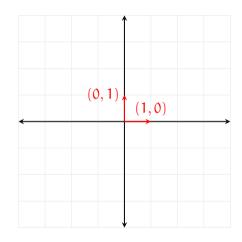
Question: Is
$$f(x) = ax + b$$
 linear?

Linear combinations of standard unit vectors

 Any n-vector can be written as a linear combination of standard unit vectors. Example:

$$\begin{bmatrix} 2 \\ -3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- n-dimensional standard unit vectors form a *basis* for \mathbb{R}^n
- n-dimensional standard unit vectors form span the vector space \mathbb{R}^n

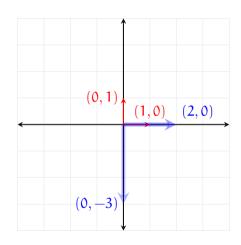


Linear combinations of standard unit vectors

 Any n-vector can be written as a linear combination of standard unit vectors. Example:

$$\begin{bmatrix} 2 \\ -3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- n-dimensional standard unit vectors form a *basis* for \mathbb{R}^n
- n-dimensional standard unit vectors form span the vector space \mathbb{R}^n

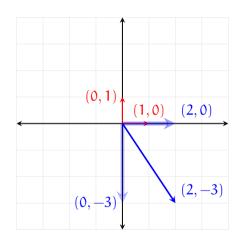


Linear combinations of standard unit vectors

 Any n-vector can be written as a linear combination of standard unit vectors. Example:

$$\begin{bmatrix} 2 \\ -3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- n-dimensional standard unit vectors form a *basis* for \mathbb{R}^n
- n-dimensional standard unit vectors form span the vector space \mathbb{R}^n



Dot (inner) product

• Dot product is an operation between two vectors with same dimensions

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \ldots + \mathbf{u}_n \mathbf{v}_n$$

Dot (inner) product

• Dot product is an operation between two vectors with same dimensions

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \ldots + \mathbf{u}_n \mathbf{v}_n$$

• Calculate the dot products for the following vectors

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 4 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -4 \\ -6 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Dot (inner) product

• Dot product is an operation between two vectors with same dimensions

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \ldots + \mathbf{u}_n \mathbf{v}_n$$

• Calculate the dot products for the following vectors

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 4 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -4 \\ -6 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

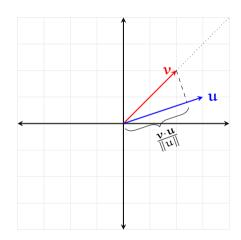
• Note that dot product is larger when the vectors are 'similar'

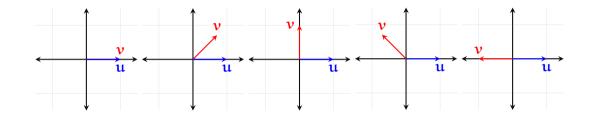
Properties of dot product

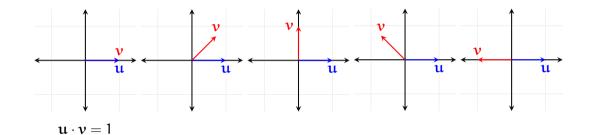
- Commutativity $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- Distributivity with vector addition $\mathbf{u} \cdot (\mathbf{v} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{u}$
- Associativity with scalar multiplication $(a\mathbf{u}) \cdot (b\mathbf{v}) = ab(\mathbf{u} \cdot \mathbf{v})$.
- Note that dot product is not associative, since the result of the dot product is not a vector, but a scalar

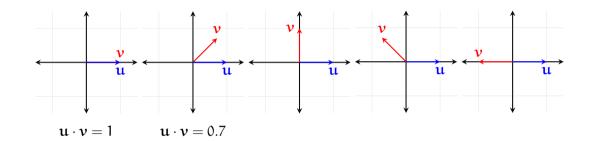
Geometric interpretation of the dot product

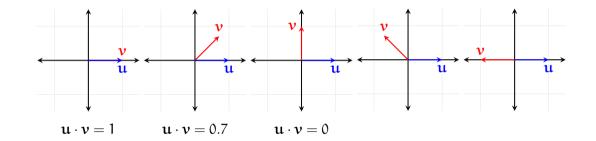
 The dot product of two vectors gives the (orthogonal) projection of one of the vectors to the line defined by the other

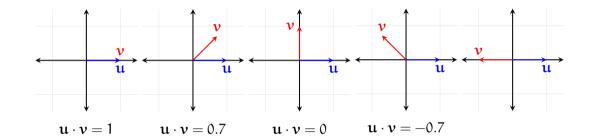


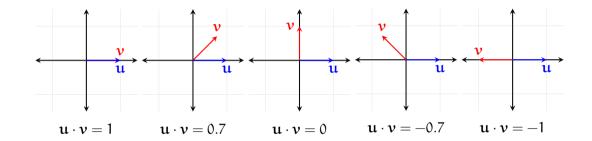


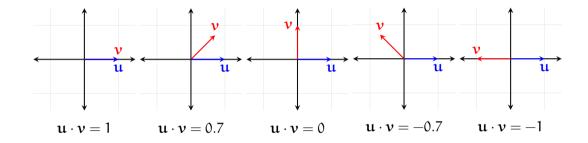












- The dot product is larger if the vectors point to the similar directions
- The dot product is 0 if the vectors are orthogonal

Vector norms

- The *norm* of a vector is an indication of its size (magnitude)
- The norm of a vector is the distance from its tail to its tip
- Norms are related to distance measures
- Vector norms are particularly important for understanding some machine learning techniques

L2 norm

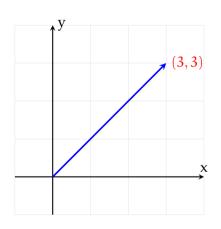
- Euclidean norm, or L2 (or L₂) norm is the most commonly used norm
- For $v = (v_1, v_2, \dots v_n)$,

$$\|\nu\|_2 = \sqrt{\nu_1^2 + \nu_2^2 + \dots \nu_n^2}$$
$$= \sqrt{\nu \cdot \nu}$$

For example,

$$||(3,3)||_2 = \sqrt{3^2 + 3^2} = \sqrt{18}$$

• L2 norm is the default, we often skip the subscript $\|v\|$

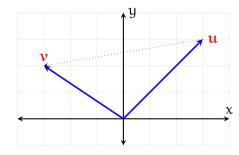


Euclidean distance

 Euclidean distance between two vectors is the L2 norm of their difference

$$D(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(-6)^2 + (-1)^2}$$

- Euclidean distance is a metric
 - symmetric $\|\mathbf{v} \mathbf{u}\| = \|\mathbf{u} \mathbf{v}\|$
 - non-negative
 - and obeys the triangle inequality $D(\mathbf{u}, \mathbf{v}) \leq D(\mathbf{u}, \mathbf{w}) + D(\mathbf{w}, \mathbf{v})$ for any \mathbf{w}



Cauchy-Schwarz inequality

$$|\mathbf{u} \cdot \mathbf{v}| \leq \|\mathbf{u}\| \|\mathbf{v}\|$$

- In words: the product of the norms of two vectors is greater than or equal to absolute value of their dot product
- Inequality is important as it links norms and the dot product, it is useful proofs of many intersting relations
- Equality holds only when two vectors are aligned

Chebyshev's inequality

Given a vector $\mathbf{v}=(v_1,v_2,\dots v_n)$ with k entries with the property $|x_i|\geqslant \alpha$, $\|\mathbf{v}\|^2\geqslant k\alpha^2$

- This puts a limit on the number of large (divergent) values in a vector in terms of its norm
- A trivial consequence: no entry in a vector can be larger than its norm
- The inequality also has important consequences in statistics (we will return to it later)

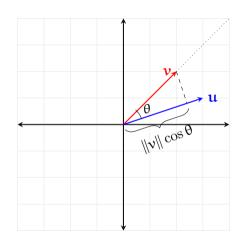
Cosine similarity

The cosine of the angle between two vectors

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\| \cdot \|\mathbf{u}\|}$$

is called *cosine similarity*

- Unlike dot product, the cosine similarity is not sensitive to the magnitudes of the vectors
- The cosine similarity is bounded in range [-1, +1]



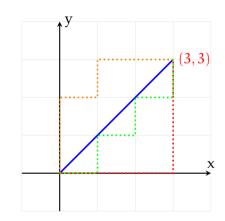
L1 norm

 Another norm we will often encounter is the L1 norm

$$\|v\|_1 = |v_1| + |v_2|$$

 $\|(3,3)\|_1 = |3| + |3| = 6$

L1 norm is related to Manhattan distance



L_P norm

In general, L_P norm, is defined as

$$\|v\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{\frac{1}{p}}$$

L_P norm

In general, L_P norm, is defined as

$$\|\mathbf{v}\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{\frac{1}{p}}$$

We will only work with than L1 and L2 norms, but you may also see L_0 and L_∞ norms in related literature

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,m} \end{bmatrix}$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Some operations in linear algebra also generalize to more than 2-D objects
- A *tensor* can be thought of a generalization of vectors and matrices to multiple dimensions

Matrices

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,m} \end{bmatrix}$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Some operations in linear algebra also generalize to more than 2-D objects
- A *tensor* can be thought of a generalization of vectors and matrices to multiple dimensions

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

$$2\begin{bmatrix}2 & 1\\1 & 4\end{bmatrix} = \begin{bmatrix}2 \times 2 & 2 \times 1\\2 \times 1 & 2 \times 4\end{bmatrix} = \begin{bmatrix}4 & 2\\2 & 8\end{bmatrix}$$

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element

$$\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Note:

 Matrix addition and subtraction are defined on matrices of the same dimensions

Transpose of a matrix

Transpose of a $n \times m$ matrix is an $m \times n$ matrix whose rows are the columns of the original matrix.

Transpose of a matrix \mathbf{A} is denoted with \mathbf{A}^{T} .

If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$
, $\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$.

Some special matrices

Identity matrix

• A square matrix in which all the elements of the principal diagonal are one and all other elements are zero is called *identity matrix* (I)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplying a vector and matrix with the identity matrix has no affect

Some special matrices

Diagonal matrices

- Diagonal matrices are similar to I. All non-diagonal entries are 0s, but non-zero entries can only be in the main diagonal
- Example:

$$\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Some special matrices

Upper/lower triangular matrices

- Triangular matrices are useful in many applications
- An upper triangular matrix have all 0s below main diagonal. Example:

$$\begin{bmatrix} 1 & 4 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

• An lower triangular matrix have all 0s above main diagonal. Example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 8 & 7 & 1 \end{bmatrix}$$

Symmetric matrices

- Symmetric matrices arise in many applications, including in ML/NLP (e.g., similarity or distance matrices)
- A symmetric matrix **A** satisfies $a_{ij} = a_{ji}$, or $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$
- Example:

$$\begin{bmatrix} 1 & 4 & -2 \\ 4 & 3 & 0 \\ -2 & 0 & 5 \end{bmatrix}$$

• Symmetric matrices have some interesting properties (that we will return later)

• An $n \times m$ matrix can be multiplied with a m-vector to yield a n-vector

- An $n \times m$ matrix can be multiplied with a m-vector to yield a n-vector
- Example

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \times 0 + 1 \times 1 + 0 \times 0 \\ 1 \times 0 + 0 \times 1 + 1 \times 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- An $n \times m$ matrix can be multiplied with a m-vector to yield a n-vector
- Example

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \times 0 + 1 \times 1 + 0 \times 0 \\ 1 \times 0 + 0 \times 1 + 1 \times 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• One view of this operation: each entry in the resulting vector is a dot product (of rows of the matrix and the vector)

- An $n \times m$ matrix can be multiplied with a m-vector to yield a n-vector
- Example

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \times 0 + 1 \times 1 + 0 \times 0 \\ 1 \times 0 + 0 \times 1 + 1 \times 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- One view of this operation: each entry in the resulting vector is a dot product (of rows of the matrix and the vector)
- Another: the result is a linear combination of the columns of the matrix (with the entries in the vector as coefficients)

$$0 \times \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 1 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0 \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Matrix multiplication as linear transformation

- Multiplying a vector with a matrix transforms the vector
- The result is another vector (possibly in a different vector space)
- Many operations on vectors can be expressed with multiplying with a matrix (linear transformations)

Transformation examples identity

- Identity transformation maps a vector to itself
- For example:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Transformation examples

permutation

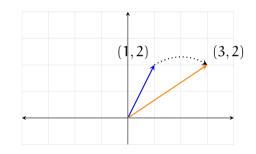
- Another simple transformation is to permute (re-arrange) the elements (rows) of the vector
- For example:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_4 \\ x_2 \\ x_3 \\ x_1 \end{bmatrix}$$

Matrices transform vectors

stretch along the x axis

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

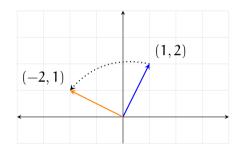


Transformation examples rotation

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Transformation examples rotation

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$



Transformations by rectangular matrices

- Multiplying a vector with (compatible) rectangular matrix results in a vector with different dimensionality
- Example $\mathbb{R}^3 \to \mathbb{R}^2$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• Example $\mathbb{R}^3 \to \mathbb{R}^4$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

Dot product as matrix multiplication

In machine learning (and many other disciplines), we treat an n-vector as an $n \times 1$ matrix.

Then, the *dot product* of two vectors is

$$\mathbf{u}^{\mathsf{T}}\mathbf{v}$$

For example,
$$\mathbf{u} = (2,2)$$
 and $\mathbf{v} = (2,-2)$,

$$\begin{bmatrix} 2 & 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Dot product as matrix multiplication

In machine learning (and many other disciplines), we treat an n-vector as an $n \times 1$ matrix.

Then, the *dot product* of two vectors is

$$\mathbf{u}^{\mathsf{T}}\mathbf{v}$$

For example, $\mathbf{u} = (2,2)$ and $\mathbf{v} = (2,-2)$,

$$\begin{bmatrix} 2 & 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ -2 \end{bmatrix} = 2 \times 2 + 2 \times -2 = 4 - 4 = 0$$

• This is a 1×1 matrix, but matrices and vectors with single entries are often treated as scalars

Question: What is the transformation performed by dot product?

Outer product

The outer product of two column vectors is defined as

$$vu^T$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} =$$

Outer product

The outer product of two column vectors is defined as

$$vu^T$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

Note:

- The result is a matrix
- The vectors do not have to be the same length

- if **A** is a $n \times k$ matrix, and **B** is a $k \times m$ matrix, their product **C** is a $n \times m$ matrix
- Elements of C, c_{i,i}, are defined as

$$c_{ij} = \sum_{\ell=1}^{k} a_{i\ell} b_{\ell j}$$

• Note: $c_{i,j}$ is the dot product of the ith row of **A** and the jth column of **B**

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + \dots a_{1k}b_{k1}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + \dots a_{1k}b_{k2}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{1m} = a_{11}b_{1m} + a_{12}b_{2m} + \dots a_{1k}b_{km}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + \dots a_{2k}b_{k1}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} + \dots a_{2k}b_{k2}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{2m} = a_{21}b_{1m} + a_{22}b_{2m} + \dots a_{2k}b_{km}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{n1} = a_{n1}b_{11} + a_{n2}b_{22} + \dots + a_{nk}b_{k1}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

Matrix multiplication

(demonstration)

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{n2} = a_{n1}b_{12} + a_{n2}b_{22} + \dots + a_{nk}b_{k2}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

Matrix multiplication

(demonstration)

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{nm} = a_{n1}b_{1m} + a_{n2}b_{2m} + \dots + a_{nk}b_{km}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

Matrix multiplication

(demonstration)

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{pmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{pmatrix}$$

Matrix multiplication example

$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} =$$

Matrix multiplication example

$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$$

Complexity of matrix multiplication

• How many scalar multiplications do we perform when multiplying an $n \times m$ matrix with a $m \times k$ matrix?

Complexity of matrix multiplication

- How many scalar multiplications do we perform when multiplying an $n \times m$ matrix with a $m \times k$ matrix?
 - We do $n \times k$ dot products
 - Each dot product multiplies m-dimensional vectors
 - we have $n \times m \times k$ multiplications
- In general, the complexity of matrix multiplication is $O(n^3)$
- Faster algorithms exist $(O(n^{2.81})$ or even $O(n^{2.37}))$

Properties of matrix multiplication

Associativity

$$(AB)C = A(BC)$$

Distributivity

$$A(B+C) = AB + AC$$
$$(A+B)C = AC + BC$$

Multiplication by identity matrix

$$IA = AI = A$$

- Matrix multiplication is not commutative $AB \neq BA$ (in general)
- Matrix multiplication and transpose

$$(\mathbf{A}\mathbf{B})^\mathsf{T} = \mathbf{B}^\mathsf{T}\mathbf{A}^\mathsf{T}$$

- A: a 10×2 matrix
- **B**: a 2×5 matrix
- **C**: a 5×10 matrix
- What is the dimensionality of **ABC**

- A: a 10×2 matrix
- **B**: a 2×5 matrix
- C: a 5×10 matrix
- What is the dimensionality of ABC
- Does it matter if we perform the multiplication as

- A: a 10×2 matrix
- **B**: a 2×5 matrix
- C: a 5×10 matrix
- What is the dimensionality of ABC
- Does it matter if we perform the multiplication as
 - -(AB)C, or

- A: a 10×2 matrix
- **B**: a 2×5 matrix
- C: a 5×10 matrix
- What is the dimensionality of ABC
- Does it matter if we perform the multiplication as
 - -(AB)C, or
 - -A(BC)

Alternative ways to think about matrix multiplication

If we have AB = C,

- Column vectors of \mathbf{C} , $\mathbf{c_i} = \mathbf{Ab_i}$
- Row vectors of C, $c_i^T = a_i^T B$
- C is also the sum of outer product of columns of A and rows of B

$$C = \sum \alpha_i b_i^T$$

Matrix-vector representation of a set of linear equations

The set of linear equations

$$\begin{array}{rcl}
2x_1 & + & x_2 & = & 6 \\
x_1 & + & 4x_2 & = & 17
\end{array}$$

can be written as:

$$\underbrace{\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}}_{W} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 6 \\ 17 \end{bmatrix}}_{D}$$

One can solve the above equation using row reduction, or *Gaussian elimination* (we will not cover it today).

Inverse of a matrix

(a first introduction)

• Inverse of a square matrix W, when it exists, is denoted W^{-1} , and defined as

$$WW^{-1} = W^{-1}W = I$$

• Can you calculate the inverse of the following matrix?

$$\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

Inverse of a matrix

(a first introduction)

• Inverse of a square matrix W, when it exists, is denoted W^{-1} , and defined as

$$WW^{-1} = W^{-1}W = I$$

• Can you calculate the inverse of the following matrix?

$$\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} & & \\ & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Inverse of a matrix

(a first introduction)

• Inverse of a square matrix W, when it exists, is denoted W^{-1} , and defined as

$$WW^{-1} = W^{-1}W = I$$

• Can you calculate the inverse of the following matrix?

$$\begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Once we invert the matrix, the solution to Wx = b is simply $x = W^{-1}b$
- We'll learn later how to calculate the inverse systematically

Summary & next week

- Vectors, matrices
- Operations between vectors and matrices
- Dot product

Next:

• Solving systems of linear equations

Further reading

- A classic reference book in the field is Strang (2009)
- Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with a more practical/graphical orientation.
- Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks that are freely available.
- For more alternatives, see http://www.openculture.com/free-math-textbooks
- You may also find the MIT video lectures on introductory linear algebra at https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D

Further reading (cont.)

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. ISBN: 9780984417551. URL: http://linear.ups.edu/.

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. url: https://www.math.ucdavis.edu/~linear/.

Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition, CRC Press, ISBN: 978-1-4665-7958-3.

Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman. ISBN: 978-1-4292-1521-3.

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. ISBN: 9780980232714.