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Why probability theory?

But it mist be recognized that the notion "probability of a sentence’is an entirely
useless one, under any known interpretation o this term. — Chomsky (1968)

Short answe, pracice proved otherwise, )

en,,mly long answer
fany

et

« Probability

language is not an exception

better explained as tend ther than

What is probability?

Informally,
« Probability is a measure of (\m)cerlaml)
- We quantify the p th 1
(inclusive)

0 the event is impossibl
03 the event i s kel {0 happen ast s not
1 the eventis certain

Some definitions

. P
deterministically

« The set of all possible outcomes of the experiment is called its sample space ()
« Any member of the sample space s called an outcone
« Anevent (E) s a set of outcomes
Axioms of probability:
1. P(E) € R, P(E) > 0
2. p(0) =1

5. For disjoint events Ey and Ez, P(Ey U E2) = P(Ey) + P(E2)
Example: coin toss More examples: balls and urns
+ Random experiment: tossing a coin once.
s a ther ‘heads’ (H) or “tails’ (T).
= Samplespace, 0 = (H,1) S
~ Example events: (H, (T}, (M} U (T}, () 1 (T) O
+ Random experiment: tossing a coin twice
= Outcomes ar: both heads,bothtals, head and fai, tail and head
 Samplespac, 0 = (HH, HT, TH, TT) . () =49 i

+ Pllos)
+ Ploe)
+ Plloo,00)) = 20/81

Where do probabilities come from

Axioms of p
T majo (ival s of sssgning probabiliies t events are.
« Frequentist (objective) probabilites: probability of an event s its relative
frequency (in the limit)
« Bayesian (subjective) probabiltics: probabilitcs are degrees of beief

Random variables

« A random variable is a variable whose value is subject to uncertainty
+ A random variable as mapping betsween the outcomes of a tral to real
numbers
o ey
heightor weightof
~ length of a word. rmdomlv nhn)u\ froma corpus
~ whether an email is spam
e first wond o a boek, o st word utered by a baby

Note: not all of these are numbers

Random variables
mapping utcomes o resl numbers
« Continuous

~ Frequency of a word randomly picked from a dictionary 59.2,4013.1, 16431.9
~ Duration of a word randomly picked from a specch 1005, 220.3, 431.3

Probability mass function
Example robailsfor senence lenth nwords

« Probability mass function (PMF) of adiscrete random variable (X) maps every
possible (x) value to its probability (P(X = x)).

o ~ X
T o
- Numberof words n e 2.5,10
oz : om
2 Whtha a rview is ngaiveor oot 2o
o i Negative_Tositve i o
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s oo
—— R P
3 n 28
o 10000 01000 00100 00010 D &g
Populations, distributions, samples Probability density function (PDF)
A probability distribution characterizes a randorm variable
o witha if we have + Continuous variables ha
2 finite sample space probability density functons
+ Otherwise, we use (parametric)functons to map the (ininite) setof o AT T ey .
outiakes 1o Erubebit notation: we use lowercase p for
+ Probability distributions characterize possibly ininite populations = ,
+ In most cases we have to work with sampls ) .
A sample from the distribution on the previous slides asatneny lleding ol
1,2,2,3,3,3,4,4,57,11] o PX=x)= 05
@® + Non zero probabilitis are possible N
S D for ranges L
20 .
0 Placx <) = [ poax
® DD DD ] [}




Cumulative distribution function Expected value

S + Expected value (mean) of a random variable X i,
1 Tength _Prob._C_Prch 2
i s S EIX = = 3 Plxo)ss = Plxr xr 4 Plxala 4 ... + Plxalxn
2 T o5 00 Hu;‘ (i + Plxa)ea + (xn )
H 2 ) 034 -
2 3 0 05 + More generaly, expected value of a function of X is
] 1 o1 om
£ 5 ol 08 B = ¥ PO
R ¢ ow om HPTBIE)
k] 7 00 035
: 5 o 09 + Expected value is a measure of centraltendency
o o 00 (54 « Note: it is not the ‘most likely’ value
8 9 @ & Noe: it s not the ‘most ikely val
5 @ + Expected value i linear

123 67891011
Semence ength ElaX +bY] = aE[X] + BEIY]

Variance and standard deviation

« Variance of a random variable X is,

Var(X)

Z Plxi)(xi — w)? = EIX? — (EIX)?

« Itis a measure of spread, divergence from the central tendency
« The square root of variance is called standard deviation

\ (;Pm]x.‘) -

+ Standard deviation is in the same units as the values of the random variable
« Variance is not linear: 0%,y # 0% + 0§ (neither the o)

Short divergence: Chebyshev’s inequality Median and mode of a random variable
For any probabilty distrbution, and k> 1 Median s the mid-point of a distribution. Median of a random variable s defined as
- - Y ’ the number m that satisfies
i
Plx—l> ko) < POX<m) > 1 and PXm) >
+ Medianof 1,4,5,8,10is 5

Distancefrompt 20 30 50 100 1000 + Median of 1,4,5,7,8,101s 6

Probabilty 025 011 004 001 00001 Mode is the value that occurs most often in the data
« This leads to what i called weak law of large numbers: mean of an independent + Modes appear as peaks in probability mass (or density) functions
he size of the sampl + Modeof 1,4,4,8, 101 4

« Modes of 1,4,4,

9,9are4and 9

Mode, median, mean, standard deviation Mode, median, mean

mode - medan =30
B o
o mess
] 2 —
in i
oo
123156780 m0m
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Multimodal distributions Skew

+ Another important property of a probability distribution is s skew
« symmetric distrbutions have no skew

+ positively skewed distributions have a long fal on the right

« negatively skewed distributions have a long left tail

[l 2 4 6
« A distribution is multimodal if it has multiple modes
5 5 0 1 2

« Multimodal distributions often indicate confounding variables

Another example distribution
A probabily detritionoerletiers
‘An alphabet with §lttes and their probabiliies of occurrance;

Probability distributions

« A distribution on a finite set of outcomes can be defined by a vector (or table)
of probabilities

+ Some random variables (approximately) follow a distribution that can be
parametrized with a (small) number of parameters

« For example, Gaussian (or normal) distribution is conventionally

L. a2 b ¢ d e { g &
Prob. 023 004 005 008 029 002 007 02

= parametrized by its mean () and variance (o)
N + Common notation we use for indicating that a variable X follows a particular
Ha distribution is
£ o X~ Normal(,0%) or X~ N(u,0?).
+ For the restofthis lecture, we will evise some of the important probability
distributions

G
Letier




Probability distributions (cont)

A probability distribution is called wriouriate f it was defined on scalars,

Uniform distribution (discrete)

+ A uniform distribution assigns equal
probabilities to all values in range
X~ Unif(a,b)

« multiariate probability distributions are defined on vectors D
* Probabily - " parametesof the distrbution
map eentsjoutcomes fo robabilife) e
+ A probabilty distbution s a sang .
I st roblems, we nly have acess o ol Cubge .
* Learming finci dstribution R
frnacigh + There is also an analogous @ b
contimaous uniform disrbution
Bernoulli distribution Binomial distribution
perments with o
outcomes
+ Coinflps hends or s o s the
 Spam detcton: spam o ot “succoses’ I
 Prdicing gender:fomaleor male
A e oy ixo = (-t
the other with 0 (often called a failure)
R
=» & =np(1—p)
T-p Re: iber that (" nt
PIX=k) = p*(1 —p)'* member that (i) = gy
ix=p
p—p)
Categorical distribution Categorical distribution example
el ueomes o ol o 0 ke
 Extension of Bernoull o k mutually exclusive utcomes
« o any loray event,the probbilty disrbuticn s pararerized by &
parameters pi,...,py (k- 1 independent parameters) where D
o1s
=0 0.10-
| | ‘ [ |
Var(x) = pul1 - po) Ll L
ar) =pill e L R I A I
. t distribution is the *
generalizaton of ctegorical dssbution o ol

Beta distribution

 Beta distibution s defined i range 0,11
s characterzed by two parameers cand B

X1 = x)p!
T

Plx)

Beta distribution

where do e use it

« A common use i the random variables whose values are probabilities
« Particularly prior of Bernoul
and Binomial distributions

I vectors

whose components are in range (0,1) and x|y = 1.
« Dirichlet distribution s used often in NLP, e, latent Dirichlet allocation is a
well know method for topic modeling.

Example Dirichlet distributions

222

Example Dirichlet distributions
08,08,08)

Example Dirichlet distributions

Gaussian (normal) distribution

Plx) = e




Short detour: central limit theorem

Centrallimit theorem states that the sum of a large number of independent and
identically distributed variables (i.d.) is normally distributed.
« Expected value (average) of means of samples from any distribution will be
distributed normally

« Many (inference) methods in statistics and machine learning work because of

this fact
« Thi . I

converges to true (population) mean

Student’s t-distribution

« Tdistribution s another important
distribution
« Itis similar to normal distribution,
but it has heavier tails
has one parameter: degree of
Jreedons (v)

Joint and marginal probability

Two. bles form a joint
An example with letter bigrams:
a b« e h
a| 004 002 002 005 005 001 002 006| 023
b| 001 000 000 000 001 000 000 00| 004
c| 002 000 000 000 001 000 000 001 005
d| 002 000 000 001 002 000 001 002| 008
e| 006 002 o001 003 008 001 001 007 029
£] 000 000 000 000 001 000 000 00| 002
g| 001 000 000 001 002 000 001 002| 007
h| 008 000 000 001 010 000 001 002 02
023 004 005 008 029 002 007 022

Expected values of joint distributions
EX, V) = XY Pl y)iiny)
i =EXI= Y Y Pl
5 pixuly
=5

We can simplify the notation by vector notation, for i = (s, y ),

n= ) xPix)
=

EIY

i

here vector x ranges over al possible combinations of the values of random
variables X and Y.

Variances of joint distributions
=3 ¥ Ployx-
=Y 5 Proully -

5 Pxylx—wxlly v
o

ox

« The last quantity i called couuriance which indicates whether the two
variables vary together or not
Again,

we can define

()as

= =Elx—p)?

Covariance and the covariance matrix

o o
=[% %l
e mln diaonal fthe variancematex contains the varancs o he
ndiido vorables
« Non-isgonal et th covatance fthecorponcing vatals
* Corrancematetx s ymmere (o1 = vx)

« For K variables ofsizek x k

Correlation

visualization (1)

Correlation is a normalized version of covariance. . i)
oy
Correlation coefficient (r) takes values between —1 and 1 s Lo
1 Perfoctpositive correlation. e
(0,1) positive correlation:  increases as y increases. a Lo
0 No correlation, variables re independent. BRI
1,0) negative correlaton: x decreases as y increases ao®
1 Perfect negative correlation. .
Note: like covariance, correlation is a symmetric measure. x
Correlation: visualization (2) Correlation:
f—— P
v oo v = ose
Correlation: visualization (4) Correlation: visualization (5)
v v




Correlation and independence

« Statistical (in) dependence is an important concept (in ML)
« The correlation (or covariance) of independent random variables is 0

@ TP linear dependence (relation:
Variabls a o neer dependence s not measared by corelation

ntwo

Short divergence: correlation and causation

Conditional probability

In our leter bigram example, given that we know that the firsteter s ¢, what s
the probability of second letter being d7
s b < 4

et 5 nm
| 007 0015 0017 0031 004 0005 0019 0062 | 0233
b o000 o002 0009
< |00 ooor
o0 oo oa19
e |o0ss oo o
i oo oo0r 0005
& [ 000 0002 o018
b oo 000 e
03 00 0046 008 023 003 0066 0219

P(Ly = e Ly = ) = 0026 PiLy =) =028

PILy

Plla=dll=¢)= el =d_oom

Conditional probability (2)
In terms of probability mass (or density) functions,

POGY)
PIXIY) = gy
pendent, knowing
probability of the other variable
PIXIY)=PIX)  PX,Y) = PIXIP(Y)

More notes on notation/interpretation
PIX =Y =) Probability that X = x and Y = y at the same time (joint
probability)
P(Y=y) Probability of Y =y, for any value of X (I yex P(
(margial probabiy)
4 Probability of X = x, given Y = y (conditional probability)

%Y

)

PX=x|Y

Bayes’ rule

JPIX)
F‘Xw)iwvm:’x,

T the axioms of the p
« Ttis often useful as it ‘inverts’ the conditional pmbabdmes
« The term P(X), s called prior

« The term P(Y | X), is called likelihood

« The term P(X| Y),is called posterior

Example application of Bayes’ rule

We use a test { to delermine whether a patient has COVID-19 (c)
« Ifa patient has c testis positive 99% of the time: Pt ¢) = 0.9
« Whatis the probability that a patient has c given t2
« ..o more correctly, can you calculate this probability?
* Wonasd 1o ket e it Lot ssvame
Plc) =001 and P(t|~¢) =
PlLIPle) P(ticIP(c)

el = o Pl
Plelt) = 50— = Faremer+ P

Chain rule
We rewrite the relation between the joint and the conditional probability as
Pix,y) =Plx|y)Ply)
We can also write the same quantity as,

Plxy!

| xIP(x)

For more than two variables, one can write.

Plx,,2) = Plz 1%, y)Ply | xIP(x) = Plx| y,zIPly | 2IP(z]

In general, for any number of random variables, we can write

Plxt, 2,000y %) = Pl 32,00 X P2,

Conditional independence
1f wa events are conditionally independent:
Plyyz) = P(x|2)Ply | 2)

Ths s often use For examp
s e i B e e

P(wi, w2,w3 | spam) = Plwy w2, w3, spamIP (s | w3, spam]Plws | spam)

with words each other

given we know the mail i spam or n,

Plwi,wa,ws [ spam) = Plwy | spam)P(w; | spam)P(ws | spam)

Continuous random variables
some reminders
The rules and quantities we discussed above apply to continuous random
variables with some differences
« For continuous variables, P(X = x] =0

Multivariate continuous random variables

+ Joint probabilty density

W camot b by ofhe vl i g 0. el T T
+ Butwe can defineprobabiltes o ranges + Marginal probabiity .
e e S N RS O
« Probability of a range: =
Pla<x <= [ pixiax
Multivariate Gaussian distribution Samples from bi-variate normal distributions
% ) g (ee e [ 9) i
PIX1Xz) N




Summary: some keywords Next
+ Probabily outcome, « Jointand margina probablies

« Random variables: discrete and
continuous

« Probability mass function

« Probability density function

« Conditional probability
« Information theory

« Estimation and regression (again)

« Machine Learning and generalization

binomial
categorical - multinomial
beta Dirichlet

Gaussian  Student’s

Recommended reading; Probability theory tutorial by Goldwater (2018)

References and further reading
+ MacKay (2003) covers most o the topics discussed in a way quite elevan to
‘machine learning, The complete book i available frecly online (see the link
below)
+ Sce Grinstead and Snell (2012) a more conventional introduction to
probabilty theory. This book i also freely available
+ For an influential, but ot uite conventional approach, see Jaynes (2007)



https://doi.org/10.1007/BF00568049
https://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.inference.phy.cam.ac.uk/itprnn/book.html
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