Linear algebra: regression Statistical Natural Language Processing 1

Cağrı Cöltekin

Winter Semester 2025/2026

Recap: solutions to systems of linear equations

- - Square, n m Unique solution if A is full rank n = r
 Otherwise,

 - Infinite solutions if b is in the column space of A
 No solutions otherwise Rectangular, n < m (wide matrix)
 - Infinite solutions if b is in the column space of A
 No solutions otherwise
 - Rectangular, n > m (tall/thin matrix)

 - Unique solution if b is in the column space of A
 No solutions otherwise

this lecture

Linear regression: and alternative view

- · Linear regression is also about finding the closest solution to a system of equations without a solution
- Given a dataset like
- x₂ 5.21 x₁ 250.39 332.18
- 59.67 154.43 7.01 166.23 + Find the closest solution to Xw=y

y 4913.19

- In other words, we solve Xw = p, where p is a vector that allows the system to be solved, and it the closest such vector to y

Finding the projection • p is a scalar multiple (linear

- combination) of x: p = xw

 - We know that the length of p is the normalized dot product x^Ty/|x|
 - We get the projection, if we multiply this with the unit vector in x
 - $p = \frac{x}{\|x\|} \frac{x^T y}{\|x\|} = \frac{xx^T}{\|x\|^2} y = \frac{xx^T}{x^T x} y$
- · w, in this case is also easy:
- $w = \frac{x^T y}{x^T x}$

- Solution to the simple regression example
 - · Our 'training' gives us $x - \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $y - \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 - $w = \frac{x^T y}{x^T x}$
 - . For future x values, the prediction of The model:
 - y = wx $y = \frac{2}{5}x$ Ouestions:
 - · what is the error e on the training instances
 - what is e^Tx?

Linear regression in higher dimensions

- In higher dimensional spaces we want the projection onto the column space of X
- The error vector e is perpendicular to all column vectors of X, x_i
- Again, note that e = y = p

Quick recap

- So far we reviewed · Vectors, matrices
 - . Operations on vectors and matrices: scalar multiplication, addition, do
 - product, matrix multiplication Matrices as operators (linear functions / transformations)
 - . Linearity and linear combinations
 - Solving systems of linear equations, elimination
 - Finding matrix inverse

Linear regression Linear regression is about finding a

linear model of the form, $y = w_1x + w_0$

- u is a numeric qua predict v is a measurement/value helnful
 - for predicting y * wo and we are the parameters that
 - we want to learn from data
 - both x and y can be vector valued

A simple example

 Let's take $x = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

- Instead we solve,
- xw = p
- where p is the orthogonal pro of y onto the line defined by x

Finding the projection

• Note that e - y - p

 Since x and e are orthogo $\mathbf{x}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}\mathbf{w}) = 0$ $\mathbf{x}^{\mathsf{T}}\mathbf{y} - \mathbf{x}^{\mathsf{T}}\mathbf{x}\mathbf{w}$

The other picture of the solution

• The model: $y = \frac{2}{3}x$ Predictions:

. Is this a good model?

Deriving linear regression on higher dimensions

 $X^T(y-p)=\emptyset \quad \text{Error vector is orthogonal to columns}$

 $X^T(y - Xw) = 0$ p is the weighted combination of colu $X^TXw = X^Ty$ Note: X^TX is square $w = (X^TX)^{-1}X^Ty$ The final solution

The projection of y onto columns space of X is

 $p = X(X^TX)^{-1}X^Tu$

