

Cagri Çeltekin

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2025/2026

content created by: H2O2025/2026

Reap MLE: MLE for regression

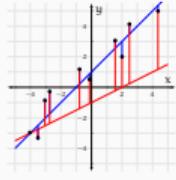
Linear regression

Linear regression is about finding a linear model of the form,

$$y = w_0 + w_1 x$$

where,

- y is a numeric quantity we want to predict
- x is a measurement/value helpful for predicting y
- w_0 and w_1 are the parameters that we want to learn from data
- both x and y can be vector valued



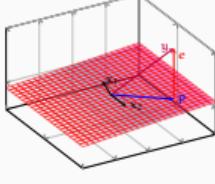
© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 1 / 19

Reap MLE: MLE for regression

Linear regression: the linear algebra approach

- We want to find $Xw = y$, but the system is overdetermined, there is no unique solution
- Only possible solutions exists in the column space of X
- The closest vector to y , in the column space of X is the orthogonal projection p
- The error $e = y - p$



© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 2 / 19

Reap MLE: MLE for regression

Deriving linear regression with linear algebra

$$\begin{aligned} X^T(y - p) &= 0 && \text{Error vector is orthogonal to columns} \\ X^T(y - Xw) &= 0 && p \text{ is the weighted combination of columns} \\ X^T X w - X^T y &= 0 && \text{Note: } X^T X \text{ is square (and invertible if } X \text{ has indep. columns)} \\ w = (X^T X)^{-1} X^T y & && \text{The final solution} \end{aligned}$$

The projection of y onto columns space of X is

$$p = Xw = X(X^T X)^{-1} X^T y$$

© Celtekin, H2O / University of Tübingen

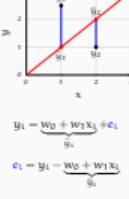
Winter Semester 2025/2026 3 / 19

Winter Semester 2025/2026 3 / 19

Reap MLE: MLE for regression

Regression as optimization: finding minimum error

- We view learning as a search for the regression equation with least **error**
- The error terms are also called **residuals**
- We want error to be low for the whole training set: average (or sum) of the error has to be reduced
- Can we minimize the sum of the errors?



© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 4 / 19

Reap MLE: MLE for regression

Least squares regression

In least squares regression, we want to find w_0 and w_1 values that minimize

$$E(w) = \sum_i (y_i - (w_0 + w_1 x_i))^2$$

- Note that $E(w)$ is a **quadratic** function of $w = (w_0, w_1)$
- As a result, $E(w)$ is **convex** and have a single extreme value
 - there is a unique solution for our minimization problem
- In case of least squares regression, there is an analytic solution
- Even if we do not have an analytic solution, if the error function is convex, a search procedure like **gradient descent** can still find the **global minimum**

© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 5 / 19

Winter Semester 2025/2026 5 / 19

Reap MLE: MLE for regression

Learning as finding the best model

- In most ML problems, learning is viewed as finding the best (parametric) **model** among a family of models
- The task is finding m given the input x such that $P(m|x)$ is the largest

$$P(m|x) = \frac{P(m)P(x|m)}{P(x)}$$

- A Bayesian learner, learns a (proper) distribution for the posterior $P(m|x)$
- Estimating only the model with the highest posterior is called **maximum a posteriori (MAP)** estimation
- Finding the model with the highest likelihood, $P(x|m)$ is called **maximum likelihood estimation (MLE)**

© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 6 / 19

Reap MLE: MLE for regression

Maximum Likelihood Estimation (MLE)

- In MLE the task is to find the model m that assigns the maximum **probability likelihood** to the observed data x
- To emphasize that likelihood is a function of model parameters, w , we indicate it as $\mathcal{L}(w; x)$
- Formally, the task is finding

$$w_{MLE} = \arg \max_w \mathcal{L}(w; x)$$

- In most cases, working with log likelihood is easier, since log is a monotonically increasing function,

$$w_{MLE} = \arg \max_w \log \mathcal{L}(w; x) = \arg \min_w -\log \mathcal{L}(w; x)$$

© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 7 / 19

Winter Semester 2025/2026 7 / 19

Reap MLE: MLE for regression

MLE: simple example with coin flips

- Assume we observed $x = 0110110011$ (0 = tail, 1 = head)
- If coin is fair (parameter $p = 0.5$), what is the likelihood of obtaining the sample above?

$$p(x|p = 0.5) = 0.5^6(1 - 0.5)^4 = \frac{1}{1024} = 0.000977$$

- If coin is biased towards T with $p = 0.4$, what is the likelihood of obtaining the sample?

$$p(x|p = 0.4) = 0.4^6(1 - 0.4)^4 = \frac{1}{1024} = 0.000531$$

- What is the model (specified with parameter p) with the maximum likelihood?

© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 8 / 19

Reap MLE: MLE for regression

MLE: example with coin flips finding the maximum likelihood

- For a trial with n_H heads and n_T tails, the likelihood function is

$$\mathcal{L}(p; x) = p^{n_H}(1 - p)^{n_T}$$

- Working with logarithms is easier

$$p_{MLE} = \arg \max_p \ln p^{n_H}(1 - p)^{n_T} = \arg \max_p n_H \ln p + n_T \ln(1 - p)$$

- Taking the partial derivative with respect to p , and setting it to 0

$$\frac{\partial \mathcal{L}}{\partial p} = \frac{n_H}{p} - \frac{n_T}{1 - p} = 0 \quad \Rightarrow p = \frac{n_H}{n_H + n_T}$$

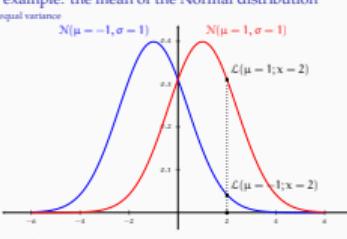
© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 9 / 19

Winter Semester 2025/2026 9 / 19

Reap MLE: MLE for regression

Another example: the mean of the Normal distribution with known/equal variance



© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 10 / 19

Reap MLE: MLE for regression

MLE for the parameters of Normal distribution

Given n independent samples, $x = [x_1, \dots, x_n]$

Likelihood: $\mathcal{L}(\mu, \sigma; x) = \prod_{i=1}^n p(x_i) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$, we want $\arg \max_{\mu, \sigma} \mathcal{L}(\mu, \sigma; x)$

Log likelihood: $\mathcal{L}(\mu, \sigma; x) \rightarrow n \ln \frac{1}{\sigma\sqrt{2\pi}} + n \ln \frac{1}{\sigma} + \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$

$$\frac{\partial \mathcal{L}}{\partial \mu} = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right), \quad \frac{\partial \mathcal{L}}{\partial \sigma} = -\frac{n}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

$$\mu_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i, \quad \sigma_{MLE} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu_{MLE})^2}$$

© Celtekin, H2O / University of Tübingen

Winter Semester 2025/2026 11 / 19

Winter Semester 2025/2026 11 / 19

Properties of MLE

- In the limit ($n \rightarrow \infty$), MLE estimate is (asymptotically) correct
- MLE estimate is consistent, more data results in more accurate estimate
- MLE estimates are asymptotically normal: estimates from a large number of samples is distributed normally
- MLE estimate can be **biased**

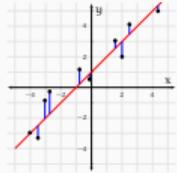
MLE for simple regression

$$y_i = w_0 + w_1 x_i + \epsilon_i$$

where $\epsilon \sim \mathcal{N}(0, \sigma)$

- We additionally assume that σ is independent of x
- This means $\epsilon \sim \mathcal{N}(0, \sigma)$
- Now the likelihood function becomes,

$$\prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - (w_0 + w_1 x_i))^2}{2\sigma^2}}$$



MLE for simple regression (2)

$$\text{Log likelihood: } \sim -n \ln \sigma \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

- Note that maximizing log likelihood is equivalent to minimizing

$$\sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

- This is the squared error (the same as what we did before)
- MLE estimate of the regression parameters is equivalent to least-squares regression

Summary / next

- We revisited three different (but equivalent) approaches to regression:
 - Best approximation to solving systems of linear equations
 - Minimizing sum of squared errors
 - MLE with Gaussian error

- Regression is the fundamental component of many ML methods: we will see similarities to regression in others

Next:

- Estimation, evaluation, bias, variance