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Recap MLE MLE for regression

Linear regression
Linear regression is about finding a
linear model of the form,

y = w1x+w0

where,
• y is a numeric quantity we want to

predict
• x is a measurement/value helpful

for predicting y

• w0 and w1 are the parameters that
we want to learn from data

• both x and y can be vector valued

−4 −2 2 4

−4

−2

2

4

x

y

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 1 / 15



Recap MLE MLE for regression

Linear regression
Linear regression is about finding a
linear model of the form,

y = w1x+w0

where,
• y is a numeric quantity we want to

predict
• x is a measurement/value helpful

for predicting y

• w0 and w1 are the parameters that
we want to learn from data

• both x and y can be vector valued

−4 −2 2 4

−4

−2

2

4

x

y

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 1 / 15



Recap MLE MLE for regression

Linear regression
Linear regression is about finding a
linear model of the form,

y = w1x+w0

where,
• y is a numeric quantity we want to

predict
• x is a measurement/value helpful

for predicting y

• w0 and w1 are the parameters that
we want to learn from data

• both x and y can be vector valued

−4 −2 2 4

−4

−2

2

4

x

y

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 1 / 15



Recap MLE MLE for regression

Linear regression
Linear regression is about finding a
linear model of the form,

y = w1x+w0

where,
• y is a numeric quantity we want to

predict
• x is a measurement/value helpful

for predicting y

• w0 and w1 are the parameters that
we want to learn from data

• both x and y can be vector valued

−4 −2 2 4

−4

−2

2

4

x

y

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 1 / 15



Recap MLE MLE for regression

Linear regression: the linear algebra approach

• We want to find Xw = y, but the
system is overdetermined, there is
no unique solution

• Only possible solutions exists in the
column space of X

• The closest vector to y, in the
column space of X is the orthogonal
projection p

• The error e = y− p

y
e

p

x1

x2
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Recap MLE MLE for regression

Deriving linear regression with linear algebra

XT (y− p) = 0 Error vector is orthogonal to columns
XT (y− Xw) = 0 p is the weighted combination of columns

XTXw = XTy Note: XTX is square (and invertible if X has indep. columns)
w = (XTX)−1XTy The final solution

The projection of y onto columns space of X is

p = Xw = X(XTX)−1XTy

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 3 / 15



Recap MLE MLE for regression

Regression as optimization: finding minimum error

• We view learning as a search for the
regression equation with least error

• The error terms are also called
residuals

• We want error to be low for the
whole training set: average (or sum)
of the error has to be reduced

• Can we minimize the sum of the
errors?
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yi = w0 +w1xi︸ ︷︷ ︸
ŷi

+ei

ei = yi −w0 +w1xi︸ ︷︷ ︸
ŷi
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Recap MLE MLE for regression

Least squares regression

In least squares regression, we want to find w0 and w1 values that minimize

E(w) =
∑
i

(yi − (w0 +w1xi))
2

• Note that E(w) is a quadratic function of w = (w0, w1)

• As a result, E(w) is convex and have a single extreme value
– there is a unique solution for our minimization problem

• In case of least squares regression, there is an analytic solution
• Even if we do not have an analytic solution, if the error function is convex, a

search procedure like gradient descent can still find the global minimum
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Recap MLE MLE for regression

Learning as finding the best model

• In most ML problems, learning is viewed as finding the best (parametric)
model among a family of models

• The task is finding m given the input x such that P(m|x) is the largest

P(m|x) =
P(m)P(x|m)

P(x)

• A Bayesian learner, learns a (proper) distribution for the posterior P(m|x)

• Estimating only the model with the highest posterior is called maximum a
posteriori (MAP) estimation

• Finding the model with the highest likelihood, P(x|m) is called maximum
likelihood estimation (MLE)
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Recap MLE MLE for regression

Maximum Likelihood Estimation (MLE)

• In MLE the task is to find the model m that assigns the maximum probability
likelihood to the observed data x

• To emphasize that likelihood is a function of model parameters, w, we
indicate it as L(w; x)

• Formally, the task is finding

wMLE = arg max
w

L(w; x)

• In most cases, working with log likelihood is easier, since log is a
monotonically increasing function,

wMLE = arg max
w

logL(w; x) = arg min
w

− logL(w; x)
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Recap MLE MLE for regression

MLE: simple example with coin flips

• Assume we observed x = 0110110011 (0 = tail, 1 = head)
• If coin is fair (parameter p = 0.5), what is the likelihood of obtaining the

sample above?

p(x|p = 0.5) = 0.56(1− 0.5)4 =
1

1024
= 0.000 977

• If coin is biased towards T with p = 0.4, what is the likelihood of obtaining the
sample?

p(x|p = 0.4) = 0.46(1− 0.4)4 =
1

1024
= 0.000 531

• What is the model (specified with parameter p) with the maximum
likelihood?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 8 / 15



Recap MLE MLE for regression

MLE: simple example with coin flips

• Assume we observed x = 0110110011 (0 = tail, 1 = head)
• If coin is fair (parameter p = 0.5), what is the likelihood of obtaining the

sample above?

p(x|p = 0.5) = 0.56(1− 0.5)4 =
1

1024
= 0.000 977

• If coin is biased towards T with p = 0.4, what is the likelihood of obtaining the
sample?

p(x|p = 0.4) = 0.46(1− 0.4)4 =
1

1024
= 0.000 531

• What is the model (specified with parameter p) with the maximum
likelihood?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 8 / 15



Recap MLE MLE for regression

MLE: simple example with coin flips

• Assume we observed x = 0110110011 (0 = tail, 1 = head)
• If coin is fair (parameter p = 0.5), what is the likelihood of obtaining the

sample above?

p(x|p = 0.5) = 0.56(1− 0.5)4 =
1

1024
= 0.000 977

• If coin is biased towards T with p = 0.4, what is the likelihood of obtaining the
sample?

p(x|p = 0.4) = 0.46(1− 0.4)4 =
1

1024
= 0.000 531

• What is the model (specified with parameter p) with the maximum
likelihood?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 8 / 15



Recap MLE MLE for regression

MLE: example with coin flips
finding the maximum likelihood

• For a trial with nH heads and nT tails, the likelihood function is

L(p; x) = pnH(1− p)nT

• Working with logarithms is easier

pMLE = arg max
p

lnpnH(1− p)nT = arg max
p

nH lnp+ nT ln(1− p)

• Taking the partial derivative with respect to p, and setting it to 0

∂L

∂p
=

nH

p
−

nT

1− p
= 0 ⇒ p =

nH

nH + nT
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Recap MLE MLE for regression

Another example: the mean of the Normal distribution
with known/equal variance
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L(µ = −1; x = 2)

L(µ = 1; x = 2)

N(µ = 1, σ = 1)N(µ = −1, σ = 1)
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Recap MLE MLE for regression

MLE for the parameters of Normal distribution
Given n independent samples, x = {x1, . . . , xn},

Likelihood: L(µ, σ; x) =

n∏
i=1

p(x) =

n∏
i=1

1

σ
√
2π

e
−

(x−µ)2

2σ2 ,we want arg max
µ,σ

L(µ, σ; x)

Log likelihood: LL(µ, σ; x) = n ln 1√
2π

+ n ln 1

σ
+

1

2σ2

n∑
i=0

(x− µ)2

∂LL

∂µ
=

1

σ2

(
n∑

i=1

xi − nµ

)
,

∂LL

∂σ
= −

n

σ
+

1

σ3

n∑
i=1

(xi − µ)2

µMLE =
1

n

n∑
i=1

xi σMLE =
1

n

n∑
i=1

(xi − µMLE)
2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 11 / 15



Recap MLE MLE for regression

MLE for the parameters of Normal distribution
Given n independent samples, x = {x1, . . . , xn},

Likelihood: L(µ, σ; x) =

n∏
i=1

p(x) =

n∏
i=1

1

σ
√
2π

e
−

(x−µ)2

2σ2 ,we want arg max
µ,σ

L(µ, σ; x)

Log likelihood: LL(µ, σ; x) = n ln 1√
2π

+ n ln 1

σ
+

1

2σ2

n∑
i=0

(x− µ)2

∂LL

∂µ
=

1

σ2

(
n∑

i=1

xi − nµ

)
,

∂LL

∂σ
= −

n

σ
+

1

σ3

n∑
i=1

(xi − µ)2

µMLE =
1

n

n∑
i=1

xi σMLE =
1

n

n∑
i=1

(xi − µMLE)
2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 11 / 15



Recap MLE MLE for regression

MLE for the parameters of Normal distribution
Given n independent samples, x = {x1, . . . , xn},

Likelihood: L(µ, σ; x) =

n∏
i=1

p(x) =

n∏
i=1

1

σ
√
2π

e
−

(x−µ)2

2σ2 ,we want arg max
µ,σ

L(µ, σ; x)

Log likelihood: LL(µ, σ; x) = n ln 1√
2π

+ n ln 1

σ
+

1

2σ2

n∑
i=0

(x− µ)2

∂LL

∂µ
=

1

σ2

(
n∑

i=1

xi − nµ

)
,

∂LL

∂σ
= −

n

σ
+

1

σ3

n∑
i=1

(xi − µ)2

µMLE =
1

n

n∑
i=1

xi σMLE =
1

n

n∑
i=1

(xi − µMLE)
2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 11 / 15



Recap MLE MLE for regression

MLE for the parameters of Normal distribution
Given n independent samples, x = {x1, . . . , xn},

Likelihood: L(µ, σ; x) =

n∏
i=1

p(x) =

n∏
i=1

1

σ
√
2π

e
−

(x−µ)2

2σ2 ,we want arg max
µ,σ

L(µ, σ; x)

Log likelihood: LL(µ, σ; x) = n ln 1√
2π

+ n ln 1

σ
+

1

2σ2

n∑
i=0

(x− µ)2

∂LL

∂µ
=

1

σ2

(
n∑

i=1

xi − nµ

)
,

∂LL

∂σ
= −

n

σ
+

1

σ3

n∑
i=1

(xi − µ)2

µMLE =
1

n

n∑
i=1

xi σMLE =
1

n

n∑
i=1

(xi − µMLE)
2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2025/2026 11 / 15



Recap MLE MLE for regression

Properties of MLE

• In the limit (n → ∞), MLE estimate is (asymptotically) correct
• MLE estimate is consistent, more data results in more accurate estimate
• MLE estimates are asymptotically normal: estimates from a large number of

samples is distributed normally
• MLE estimate can be biased
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Recap MLE MLE for regression

MLE for simple regression

yi = w0 +w1xi + ϵi

where ϵ ∼ N(0, σ)

• We additionally assume that σ is
independent of x

• This means y ∼ N(w0 +w1x, σ)

• Now the likelihood function
becomes,

n∏
i=1

e
−

(yi−(w0+w1xi))
2

2σ2

σ
√
2π

−4 −2 2 4
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Recap MLE MLE for regression

MLE for simple regression (2)

Log likelihood: − n lnσ
√
2π−

1

2σ2

n∑
i=1

(yi − (w0 +w1xi))
2

• Note that maximizing log likelihood is equivalent to minimizing

n∑
i=1

(yi − (w0 +w1xi))
2

• This is the squared error (the same as what we did before)
• MLE estimate of the regression parameters is equivalent to least-squares

regression
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Recap MLE MLE for regression

Summary / next

• We revisited three different (but equivalent) approaches to regression:
– Best approximation to solving systems of linear equations
– Minimizing sum of squared errors
– MLE with Gaussian error

• Regression is the fundamental component of many ML methods: we will see
similarities to regression in others

Next:
• Estimation, evaluation, bias, variance
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