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Recap MLE MLE for regression

Linear regression

Linear regression is about finding a

linear model of the form, Yy .
4 L]
Yy =wix+wp .
where, . : !
¢ Y is a numeric quantity we want to ) ° x
predict -4 2 2 4
 x is a measurement/value helpful .
for predicting y .
e Wo and wj are the parameters that —4
we want to learn from data
A,

e both x and y can be vector valued
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Recap MLE MLE for regression

Linear regression: the linear algebra approach

o We want to find Xw =y, but the
system is overdetermined, there is
no unique solution

o Only possible solutions exists in the
column space of X

o The closest vector to y, in the
column space of X is the orthogonal
projection p

e Theerrore=y —p
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Recap MLE MLE for regression

Deriving linear regression with linear algebra

X"(y —p) =0 Error vector is orthogonal to columns
XT(y —Xw) =0 p is the weighted combination of columns
X"Xw = X"y Note: X" X is square (and invertible if X has indep. columns)
w=(X"X)"" XTy The final solution

The projection of y onto columns space of X is

p=Xw=XX"X)"TXxTy
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Recap MLE MLE for regression

Regression as optimization: finding minimum error

C. Coltekin,

We view learning as a search for the
regression equation with least error

The error terms are also called
residuals

We want error to be low for the
whole training set: average (or sum)
of the error has to be reduced

Can we minimize the sum of the
errors?
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Recap MLE MLE for regression

Least squares regression

In least squares regression, we want to find wo and wj values that minimize

Ew) =) (yi— (wo +wixi))?

i

Note that E(w) is a quadratic function of w = (wg, w1)
As a result, E(w) is convex and have a single extreme value
— there is a unique solution for our minimization problem

In case of least squares regression, there is an analytic solution

« Even if we do not have an analytic solution, if the error function is convex, a
search procedure like gradient descent can still find the global minimum
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Recap MLE MLE for regression

Learning as finding the best model

o In most ML problems, learning is viewed as finding the best (parametric)
model among a family of models

o The task is finding m given the input x such that P(m|x) is the largest

P(m)P(x|m)

P(mp) = =5

« A Bayesian learner, learns a (proper) distribution for the posterior P(m|x)

« Estimating only the model with the highest posterior is called maximum a
posteriori (MAP) estimation

o Finding the model with the highest likelihood, P(x|m) is called maximum
likelihood estimation (MLE)
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Recap MLE MLE for regression

Maximum Likelihood Estimation (MLE)

o In MLE the task is to find the model m that assigns the maximum proebability
likelihood to the observed data x

o To emphasize that likelihood is a function of model parameters, w, we
indicate it as £(w;x)

o Formally, the task is finding

wwmLg = arg max £ (w;x)
w

« In most cases, working with log likelihood is easier, since log is a
monotonically increasing function,

WwmLE = arg max log £(w;x) = arg min — log £ (w;x)
w w
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Recap MLE MLE for regression

MLE: simple example with coin flips

e Assume we observed x = 0110110011 (0 = tail, 1 = head)

o If coin is fair (parameter p = 0.5), what is the likelihood of obtaining the
sample above?
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e Assume we observed x = 0110110011 (0 = tail, 1 = head)

o If coin is fair (parameter p = 0.5), what is the likelihood of obtaining the
sample above?

1
= = 6 — 4 = — =
p(xlp =0.5) = 0.5°(1 —0.5) 1074 0.000977

o If coin is biased towards T with p = 0.4, what is the likelihood of obtaining the
sample?
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Recap MLE MLE for regression

MLE: simple example with coin flips

e Assume we observed x = 0110110011 (0 = tail, 1 = head)

If coin is fair (parameter p = 0.5), what is the likelihood of obtaining the
sample above?

1
= = 6 — 4 = — =
p(xlp =0.5) = 0.5°(1 —0.5) 1074 0.000977

If coin is biased towards T with p = 0.4, what is the likelihood of obtaining the

sample?
1
plxlp =0.4) =0.4°(1 — 0.4) 024 0.000531
o What is the model (specified with parameter p) with the maximum
likelihood?

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2025/2026 8/15



Recap MLE MLE for regression

MLE: example with coin flips

finding the maximum likelihood

o For a trial with nyy heads and n tails, the likelihood function is

L(p;x) =p™ (1 —p)"T
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Recap MLE MLE for regression

MLE: example with coin flips

finding the maximum likelihood
o For a trial with nyy heads and n tails, the likelihood function is
Llp;x) =p™ (1 —p)™"
o Working with logarithms is easier

PMLE = argmax Inp™ (1 —p)"" = argmaxny Inp +nrin(1 —p)
P P
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Recap MLE MLE for regression

MLE: example with coin flips

finding the maximum likelihood

o For a trial with nyy heads and n tails, the likelihood function is

Llpyx) =p™ (1 —p)™7
o Working with logarithms is easier

PMLE = argmax Inp™ (1 —p)"" = argmaxny Inp +nrin(1 —p)
P P

o Taking the partial derivative with respect to p, and setting it to 0

0L . nH nrt

d p T-p

nH

:0 =
=P ny +nr
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Recap MLE MLE for regression

Another example: the mean of the Normal distribution
with known/equal variance

Np=-T,0=1)
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Recap MLE MLE for regression

MLE for the parameters of Normal distribution
Given n independent samples, x = {x1,...,Xn},

Likelihood: £L(u,o;x) = Hp(x) = H !
i=1

i=1

_ (x—w)?
e 202  wewantarg max £(p, 0;X)
oV2m u,o
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i=1 i=1

_(Xfu)z
e 202  wewantarg max £(p, 0;X)
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n

— 1 1 1 2
Log likelihood: L£L(u,0;%) =nln E +nln 5 + 752 é(x —u
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Recap MLE MLE for regression

MLE for the parameters of Normal distribution
Given n independent samples, x = {x1,...,Xn},
n ]2

Likelihood: £(y, o;x) (x) 7! e (X; 7~ we want arg ma L(u, 0;x)
M ; = = o y X y ;
. I1v 11_11 ov/In grhax~n

i=1

1 T 1 &
Log likelihood: L£L(u,0;%x) =nln—+nln— + — x — p)?
g () =nin et nin g+ 77 Y (e

LL 1 [ ALL n 1 5
au:o‘2<gxi_np>’ W:—E—F?Z(Xi_u)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2025/2026



Recap

MLE MLE for regression

MLE for the parameters of Normal distribution

Given n independent samples, x = {x1,...,Xn},

n

Likelihood: £L(u,o;x) = Hp(x) = H
i=1

i=1

Log likelihood: L£L(u, 05x)

LL 1 [ e
T (Z"i—““> ’
i=1

1 n
HMLE = — Z Xi
i=1
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Recap MLE MLE for regression

Properties of MLE

In the limit (n — oo0), MLE estimate is (asymptotically) correct

MLE estimate is consistent, more data results in more accurate estimate

MLE estimates are asymptotically normal: estimates from a large number of
samples is distributed normally

MLE estimate can be biased
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Recap MLE MLE for regression

MLE for simple regression

Yi = Wo + WiXq + €

where € ~ N(0, o) !
o We additionally assume that o is 5
independent of x
e This meansy ~ N(wo +wqx, 0) . J/I
o Now the likelihood function el T
becomes, 5

(Y~ (wotwiyxy)?

mn
15—~ B
Pl oV 21
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Recap MLE MLE for regression

MLE for simple regression (2)

. 1 © 2
Log likelihood: —nlnov2m— 792 ;(yi — (wo +wi1xy))

« Note that maximizing log likelihood is equivalent to minimizing

n

D (yi— (wo +wixq))?

i=1

o This is the squared error (the same as what we did before)

o MLE estimate of the regression parameters is equivalent to least-squares
regression

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2025/2026

14/15



Recap MLE MLE for regression

Summary / next

« We revisited three different (but equivalent) approaches to regression:

— Best approximation to solving systems of linear equations
- Minimizing sum of squared errors
- MLE with Gaussian error

o Regression is the fundamental component of many ML methods: we will see
similarities to regression in others
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Summary / next

« We revisited three different (but equivalent) approaches to regression:

— Best approximation to solving systems of linear equations
- Minimizing sum of squared errors
- MLE with Gaussian error

o Regression is the fundamental component of many ML methods: we will see
similarities to regression in others

Next:

o Estimation, evaluation, bias, variance
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