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Linear regression
Lincar regression is about finding a
linear model of the form,
y=wix+wo
where,
« yis.a numeric quantity we want to
redict
« xis a measurement/value helpful
for predicting y

« wo and wy are the parameters that
we want to learn from data

« both x and y can be vector valued

Linear regression: the linear algebra approach

« We want to find Xw =, but the
System s overdetermined, here s
1o unique solution

00 pambl stk e e
column spact

« The closest vector to y, in
column space of X is the orthog\)nal
projection p

« Theerrore =y~ p

Deriving linear regression with linear algebra

XT(y—pl

0 Error vector s orthogonal to columns

XT(y—Xw) =0 pis the weighted combination of columns.
X'Xw=X"y Note: X'Xis square (and invertible if X has indep. columns)
= (X"X)"XTy  The final solution

‘The projection of y onto columns space of X is

P =Xw = XIXX) 'XTy

imating regre

on parameters
w

+ We view learning as  search for the o
regression equation with leasterror 5
+ The error terms are also called
esiduals
+ We want error o be low for the x
Whols inieg s aerige ox i)
of the error has to be reduced
+ Can we minimize the sum of the

quares regression

In wo and wy val

Elw) = ¥ yi — (wo + wixi)®

« Note that E(w) is a quadmtic function of w = (wg, w1
« Asa result, E(w) is comex and have a single extreme value
- there i unique solution for ous minimization problem.

+ In case of least squares regression, there is an analytic solution

B

i the error
search procedure like gradient descent can stllfind the global minimun

A simple example
clrsluton withnear lgebra

« The data:

0
x=[3] v
We want to solve, xw = y, but not

solvable :
+ Instead we solve, xw = p,

Xy _4x142x2 2 i
XTx Taxd+2x2 5

simple example
optimizaion approsch

cown=[] -
Model: § = wx '
« Squared errors
E(w) = (dw— 112 + (2w—2)*
=200~ 16w +5 —
« Setting the derivaiv to zeror
2 w
B dow—ts=0sw=] R e

A simple example
"
o[ o= ]
Model: § = wo +wix.
« Squared erors

« Gradient:

dwo + 12wy —6
VE(W) = [ ]

12w+ 40ws — 16
wo -+4vw1 — 112+ (wo + 2wy — 2 e

6o — 16wy 45 + Settings VE(w) =
4 _[s
1 4 = |1
6

3
+ Solution: w = [ ]
% awo +dowy — 16 172

Elw)

= 2+ 2003+ 12wy

« Partial derivatives

Solution with the intercept term

« Solution: wo = 3, wy = ~1/2
« The model: y =3~ 1/2x

o
Regression with multiple predictors Evaluating machine learning systems
wo b erx Wi e = W e
Bot Wi ¢ ey
I
o is the intercept (as before). « Any system needs a
101 are the coeffcients of the respective predictors. . (orfilure) + weneed
© is the error term (residual). quantitative measures
 using the vector notation the equation becomes:
=it
where w = (wo, wi, ..., wic) and x¢ = (1,01, i)
i 3= Xw st




Measuring su Assessing the model fit: R?

[ ——— We can express the variation explained by a regression model as:

e |

the . + In simple regression, it s the square of the correlaion coeficint betuveen the
outcome and the predictor
« The range of R? is [0, 1]
CElMGieml (w ) « 100 x R? is interpreted as ‘the percentage of variance explained by the model”
g e + R2 shows how well the model fis o the data: closer the data points to e
regression line, higher the value of R

Explained variation _ 31§ — i, )*
Total variation 3"y — py 2

« Another well-known measure is the cocfficient of determination

Explained variation Some cautionary notes
23
y
e
X o + Leastsq tive o autirs,
| Total variation y‘“‘& when minimizing squares
9 ‘N\P\v@ « Ttis always a good idea to inspect the data
+ Other (robust) method: (eguleast
o + Other (robust) methods are lso available

Tota variation
v

Unexplained variation +  Explained variation
oy y 9

y-9 . [

Summary / next

« We reviewed regression as find

+ We will come back to regression multiple times
Next:
« Probability theory
« Reading; probability theory tutorial by Goldwater (2018)
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