

Regression: the optimization view

Statistical Natural Language Processing 1

Cagrı Çeltekin

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2025/2026

version: 07/04/2025 12:08

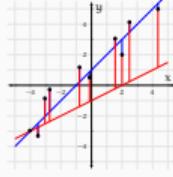
Linear regression

Linear regression is about finding a linear model of the form,

$$y = w_0 + w_1 x$$

where,

- y is a numeric quantity we want to predict
- x is a measurement/value helpful for predicting y
- w_0 and w_1 are the parameters that we want to learn from data
- both x and y can be vector valued

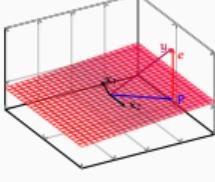


Winter Semester 2025/2026 1 / 16

Group Regression as optimization Evaluation Summary

Linear regression: the linear algebra approach

- We want to find $Xw = y$, but the system is overdetermined, there is no unique solution
- Only possible solutions exists in the column space of X
- The closest vector to y , in the column space of X is the orthogonal projection p
- The error $e = y - p$



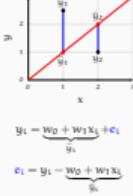
Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 2 / 34

Group Regression as optimization Evaluation Summary

Estimating regression parameters

- We view learning as a search for the regression equation with least **error**
- The error terms are also called **residuals**
- We want error to be low for the whole training set: average (or sum) of the error has to be reduced
- Can we minimize the sum of the errors?



Winter Semester 2025/2026 4 / 34

Group Regression as optimization Evaluation Summary

A simple example

earlier solution with linear algebra

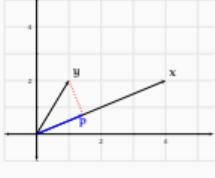
- The data:

$$\mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

We want to solve, $xw = y$, but not solvable

- Instead we solve, $xw = p$,

$$\mathbf{w} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{x}^T \mathbf{x}} = \frac{4 \times 1 + 2 \times 2}{4 \times 4 + 2 \times 2} = \frac{2}{5}$$



Winter Semester 2025/2026 6 / 34

Group Regression as optimization Evaluation Summary

A simple example

extending with the bias term

- Data: $\mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- Model: $\hat{y} = w_0 + w_1 x$

Squared errors

$$\mathbb{E}(\mathbf{w}) = (w_0 + 4w_1 - 1)^2 + (w_0 + 2w_1 - 2)^2 = 2w_0^2 + 20w_1^2 + 12w_0w_1 - 6w_0 - 16w_1 + 5$$

Partial derivatives

$$\frac{\partial \mathbb{E}}{\partial w_0} = 4w_0 + 12w_1 - 6$$

$$\frac{\partial \mathbb{E}}{\partial w_1} = 12w_0 + 40w_1 - 16$$

Gradient:

$$\nabla \mathbb{E}(\mathbf{w}) = \begin{bmatrix} 4w_0 + 12w_1 - 6 \\ 12w_0 + 40w_1 - 16 \end{bmatrix}$$

$$\nabla \mathbb{E}(\mathbf{w}) = \begin{bmatrix} 3 \\ -1/2 \end{bmatrix}$$

Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 8 / 34

Group Regression as optimization Evaluation Summary

Regression with multiple predictors

$$y_1 = w_0 + w_1 x_{1,1} + w_2 x_{1,2} + \dots + w_k x_{1,k} + e_1 = \mathbf{w}^T \mathbf{x}_1 + e_1$$

w_0 is the intercept (as before).

$w_{1,..,k}$ are the coefficients of the respective predictors.

e is the error term (residual).

• using the vector notation the equation becomes:

$$y_1 = \mathbf{w}^T \mathbf{x}_1 + e_1$$

where $\mathbf{w} = (w_0, w_1, \dots, w_k)$ and $\mathbf{x}_1 = (1, x_{1,1}, \dots, x_{1,k})$

Note that the least square error, $\mathbb{E} = \mathbf{w}^T \mathbf{w}$ is still quadratic in \mathbf{w} .

Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 10 / 34

Group Regression as optimization Evaluation Summary

Evaluating machine learning systems

- Any (machine learning) system needs a way to measure its success
- For measuring success (or failure) in a machine learning system we need quantitative measures
- Remember that we need to measure the success outside the training data

Winter Semester 2025/2026 9 / 16

Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 12 / 34

Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 13 / 34

Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 14 / 34

Group Regression as optimization Evaluation Summary

Winter Semester 2025/2026 15 / 34

Winter Semester 2025/2026 11 / 16

Measuring success in Regression

- Root-mean-square error (RMSE)

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_i^n (y_i - \hat{y}_i)^2}$$

measures average error in the units compatible with the outcome variable.

- Another well-known measure is the *coefficient of determination*

$$R^2 = \frac{\sum_i^n (\hat{y}_i - \mu_y)^2}{\sum_i^n (y_i - \mu_y)^2} = 1 - \left(\frac{\text{RMSE}}{\sigma_y} \right)^2$$

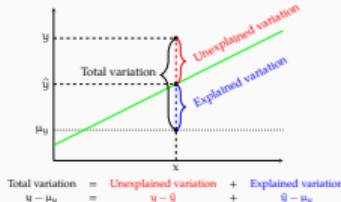
Assessing the model fit: R^2

We can express the variation explained by a regression model as:

$$\frac{\text{Explained variation}}{\text{Total variation}} = \frac{\sum_i^n (\hat{y}_i - \mu_y)^2}{\sum_i^n (y_i - \mu_y)^2}$$

- In simple regression, it is the square of the correlation coefficient between the outcome and the predictor
- The range of R^2 is $[0, 1]$
- $100 \times R^2$ is interpreted as 'the percentage of variance explained by the model'
- R^2 shows how well the model fits to the data: closer the data points to the regression line, higher the value of R^2

Explained variation



Some cautionary notes

- Least-square regression is sensitive to *outliers*, large errors contribute more when minimizing squares
- It is always a good idea to inspect the data
- Other (robust) methods are also available (e.g., least absolute deviations)
- Other (robust) methods are also available

Summary / next

- We reviewed regression as finding the minimum error through differentiation
- We will come back to regression multiple times

Next:

- Probability theory
- Reading: probability theory tutorial by Goldwater (2018)