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Recap Regression as optimization Evaluation Summary

Linear regression
Linear regression is about finding a
linear model of the form,

y = w1x+w0

where,
• y is a numeric quantity we want to

predict
• x is a measurement/value helpful

for predicting y

• w0 and w1 are the parameters that
we want to learn from data

• both x and y can be vector valued
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Recap Regression as optimization Evaluation Summary

Linear regression: the linear algebra approach

• We want to find Xw = y, but the
system is overdetermined, there is
no unique solution

• Only possible solutions exists in the
column space of X

• The closest vector to y, in the
column space of X is the orthogonal
projection p

• The error e = y− p

y
e

p

x1

x2
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Recap Regression as optimization Evaluation Summary

Deriving linear regression with linear algebra

XT (y− p) = 0 Error vector is orthogonal to columns
XT (y− Xw) = 0 p is the weighted combination of columns

XTXw = XTy Note: XTX is square (and invertible if X has indep. columns)
w = (XTX)−1XTy The final solution

The projection of y onto columns space of X is

p = Xw = X(XTX)−1XTy
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Recap Regression as optimization Evaluation Summary

Estimating regression parameters

• We view learning as a search for the
regression equation with least error

• The error terms are also called
residuals

• We want error to be low for the
whole training set: average (or sum)
of the error has to be reduced

• Can we minimize the sum of the
errors?
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yi = w0 +w1xi︸ ︷︷ ︸
ŷi

+ei

ei = yi −w0 +w1xi︸ ︷︷ ︸
ŷi
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Recap Regression as optimization Evaluation Summary

Least squares regression

In least squares regression, we want to find w0 and w1 values that minimize

E(w) =
∑
i

(yi − (w0 +w1xi))
2

• Note that E(w) is a quadratic function of w = (w0, w1)

• As a result, E(w) is convex and have a single extreme value
– there is a unique solution for our minimization problem

• In case of least squares regression, there is an analytic solution
• Even if we do not have an analytic solution, if the error function is convex, a

search procedure like gradient descent can still find the global minimum
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Recap Regression as optimization Evaluation Summary

A simple example
earlier solution with linear algebra

• The data:

x =

[
4

2

]
y =

[
1

2

]
We want to solve, xw = y, but not
solvable

• Instead we solve, xw = p,

w =
xTy

xTx
=

4× 1+ 2× 2

4× 4+ 2× 2
=

2

5

2 4

2

4

xy
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Recap Regression as optimization Evaluation Summary

A simple example
optimization approach

• Data: x =

[
4

2

]
y =

[
1

2

]
Model: ŷ = wx

• Squared errors

E(w) = (4w− 1)2 + (2w− 2)2

= 20w2 − 16w+ 5

• Setting the derivative to zero:

dE

dw
= 40w− 16 = 0 ⇒ w =

2

5
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Recap Regression as optimization Evaluation Summary

A simple example
extending with the bias term

• Data: x =

[
4

2

]
y =

[
1

2

]
Model: ŷ = w0 +w1x

• Squared errors

E(w) = (w0 + 4w1 − 1)2 + (w0 + 2w1 − 2)2

= 2w2
0 + 20w2

1 + 12w0w1 − 6w0 − 16w1 + 5

• Partial derivatives
∂E

∂w0

= 4w0 + 12w1 − 6

∂E

∂w1

= 12w0 + 40w1 − 16

• Gradient:

∇E(w) =

[
4w0 + 12w1 − 6

12w0 + 40w1 − 16

]
• Settings ∇E(w) = 0,[

4 12

12 40

] [
w0

w1

]
=

[
6

16

]

• Solution: w =

[
3

−1/2

]
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Recap Regression as optimization Evaluation Summary

Solution with the intercept term

• Solution: w0 = 3, w1 = −1/2

• The model: y = 3− 1/2x

2 4

2

4
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Recap Regression as optimization Evaluation Summary

Regression with multiple predictors

yi =w0 +w1xi,1+w2xi,2 + . . .+wkxi,k︸ ︷︷ ︸
ŷ

+ei = wxi + ei

w0 is the intercept (as before).
w1..k are the coefficients of the respective predictors.

e is the error term (residual).
• using the vector notation the equation becomes:

yi = wxi + ei

where w = (w0, w1, . . . , wk) and xi = (1, xi,1, . . . , xi,k)

Note that the least square error, y− Xw is still quadratic in w.
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Recap Regression as optimization Evaluation Summary

Evaluating machine learning systems

• Any (machine learning) system needs a way to measure its success
• For measuring success (or failure) in a machine learning system we need

quantitative measures
• Remember that we need to measure the success outside the training data
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Recap Regression as optimization Evaluation Summary

Measuring success in Regression

• Root-mean-square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)2

measures average error in the units compatible with the outcome variable.
• Another well-known measure is the coefficient of determination

R2 =

∑n
i (ŷi − µy)

2∑n
i (yi − µy)2

= 1−

(
RMSE

σy

)2
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Recap Regression as optimization Evaluation Summary

Assessing the model fit: R2

We can express the variation explained by a regression model as:

Explained variation
Total variation =

∑n
i (ŷi − µy)

2∑n
i (yi − µy)2

• In simple regression, it is the square of the correlation coefficient between the
outcome and the predictor

• The range of R2 is [0, 1]
• 100× R2 is interpreted as ‘the percentage of variance explained by the model’
• R2 shows how well the model fits to the data: closer the data points to the

regression line, higher the value of R2
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Recap Regression as optimization Evaluation Summary

Explained variation

µy

y

ŷ

x

Total variation
Une

xpla
ined

vari
atio

n

Exp
lain

ed vari
atio

n

Total variation = Unexplained variation + Explained variation
y− µy = y− ŷ + ŷ− µy
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Recap Regression as optimization Evaluation Summary

Some cautionary notes

• Least-square regression is sensitive to outliers, large errors contribute more
when minimizing squares

• It is always a good idea to inspect the data
• Other (robust) methods are also available (e.g., least absolute deviations)
• Other (robust) methods are also available
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Recap Regression as optimization Evaluation Summary

Summary / next

• We reviewed regression as finding the minimum error through differentiation
• We will come back to regression multiple times

Next:
• Probability theory
• Reading: probability theory tutorial by Goldwater (2018)
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