Linear algebra: SVD Statistical Natural Language Processing 1 · Vectors, matrices · Operations on vectors and matrices: scalar multiplication, addition, dot Cağrı Cöltekin product, matrix multiplication Matrices as operators (linear functions / transformations) University of Tübingen minar für Sorachwissenschaft · Linearity and linear combinat · Solving systems of linear equations, elimination Winter Semester 2025/2026 Finding matrix inve Linear regression Eigenvalues and eigenvectors Today's plan Orthogonal matrices * An orthogonal matrix is a square matrix whose columns (and rows) are othonormal (orthogonal unit) vectors · Some interesting properties: The product of two orthogonal matrices is another orthogonal matrix
 Orthogonal matrices are invertible
 Product of an orthogonal matrix with its transpose is the identity matrix · Singular value dec · Pseudo inverse $Q^TQ = QQ^T = I$ $\rightarrow Q^T = Q^{-1}$ Orthogonal matrices represent length-preserving and reflections)
 Determinants of an orthogonal matrix is 1 or -1 ving tran Singular Value Decomposition Singular Value Decomposition * Singular value decomposition (SVD) of an $n \times m$ matrix X is $X = U\Sigma V^T$ $\begin{array}{ll} U & \text{is a } n \times n \text{ orthogonal matrix} \\ \Sigma & \text{is a } n \times m \text{ diagonal matrix of singular values} \\ V^T & \text{is a } m \times m \text{ orthogonal matrix.} \end{array}$ Singular vectors (columns) in U are the eigenvectors of XX¹ 11 X * Singular vectors (rows) in V^T are the eigenvectors of X^TX full matric Singular value decomposition and XTX Singular value decomposition and XX^T $me X = U\Sigma V^T$ * Assume $X = U\Sigma V^T$ $XX^T = U\Sigma V^T (U\Sigma V^T)^T$ $X^TX = (U\Sigma V^T)^TU\Sigma V^T$ $-\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}$ - VΣ^TU^TUΣV^T $-\mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}$ $-V\Sigma^T\Sigma V^T$ $-115^{2}11^{3}$ - V52V Columns of U are eigenvectors of XX^T * Columns of V are eigenvectors of $X^{\mathsf{T}}X$ * Values in the diagonal matrix Σ^2 are the eigenvalues of XX^T • Values in the diagonal matrix Σ^2 are the eigenvalues of X^TX X^TX and XX^T share the eigenvalues Computing SVD Low rank estimation of a matrix * Find the eigenvalues and eigenvectors of $\boldsymbol{X}^T\boldsymbol{X}$ - X^TX is symmetric (semi) definite, the eigenvector orthogonal unit vectors, the eigenvalues are posititive or - V is the collection of the eigenvectors (of X^TX) - $\sigma_i = \sqrt{\lambda_i}$ can be chosen to be * Knowing V and Σ $X = U\Sigma V^T$ XV – UΣ $XV\Sigma^{-1} - U$. In practice there are more effic nt ways to compute SVD $X_k = U_k \Sigma_k V_k^T$ is the best rank k estimation of matrix XSVD: properties and applications Left and right inverses · Singular values are related to matrix norms SVD has a wide range of applications from image compression to document indexing to semantics of the words * For a non-square matrix, or a square matrix with rank lower than n, the inverse is not defined It is also a method for dimensionality reduction for vis * From linear regression, we know that $(X^TX)^{-1}X^T$ acts as a left inverse · A large number of statistical methods also rely on SVD (e.g., PCA, we will * Similarly we can define right inverse as $X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}$ discuss later) * Remember, however, the existence of (X^TX)⁻¹ requires columns of X to be . The condition number of a matrix, an indication of numerical stability, depends independent on singular values A more general solution falls out of SVD SVD can be computed with good numerical accuracy, as a result it is also used for computing other quantities (e.g., matrix inverse)

Quick recap

Story Comment HID Performers Incomery	Summary / next
Computing pseudo inverse	Summary / next
- We want matrix multiplication to get as close to I as possible. Consider the 3×4 diagonal matrix:	We reviewed SVD and pseudo inverse
$\begin{bmatrix} 1/\alpha & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	 SVD is a very important method. We will return to it multiple times during the course
	Next: • A very short introduction to calculus
• For an $n \times n$ diagonal matrix Σ , $\Sigma^+ = \Sigma^{-1}$ • For any invertible $n \times n$ matrix X , $X^+ = X^{-1}$	the SVD song
- In general, if we use singular value decomposition $X^+ - V \Sigma^+ U^T$	
Ç,Çildelin, 1887 Diversity of Tildegre State Security of Tildegre State Security 2017 12 / 12	C. Cillelin, 188 / Chinoshy of Tillingen Ministr Streetin 200, 200 II / II
Further reading	
Any of the linear algebra references provided earlier.	
CODIng. 10 / Departs of Talleres	
Tible State 20/20: A1	